- -

Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass

Mostrar el registro completo del ítem

Broatch Jacobi, JA.; Guardiola, C.; Bares-Moreno, P.; Denia Guzmán, FD. (2016). Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass. International Journal of Engine Research. 17(5):534-542. https://doi.org/10.1177/1468087415589701

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80757

Ficheros en el ítem

Metadatos del ítem

Título: Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass
Autor: Broatch Jacobi, Jaime Alberto Guardiola, Carlos Bares-Moreno, Pau Denia Guzmán, Francisco David
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Cylinder resonance phenomenon in reciprocating engines consists of high-frequency pressure oscillations excited by the combustion. The frequency of these oscillations is proportional to the speed of sound on pent-roof ...[+]
Palabras clave: Trapped mass estimation , Pressure resonance , Combustion diagnosis , Finite element method
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 ) (eissn: 2041-3149 )
DOI: 10.1177/1468087415589701
Editorial:
SAGE Publications (UK and US)
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/20072013/EU/
info:eu-repo/grantAgreement/EC/FP7/234032/EU/POWERtrain for FUture Light-duty vehicles/
Sustainable surface transport, grant agreement No. SCP8-GA-2009- 234032
Agradecimientos:
This research has been partially supported by the European Union in framework of the POWERFUL project, seventh framework program FP7/2007-2013, theme 7, sustainable surface transport (grant agreement number SCP8-GA-2009-234032).[+]
Tipo: Artículo

References

Powell, J. D. (1993). Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 343-350. doi:10.1115/1.2899074

Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009

Finol, C. A., & Robinson, K. (2006). Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781. doi:10.1243/09544070jauto202 [+]
Powell, J. D. (1993). Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 343-350. doi:10.1115/1.2899074

Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009

Finol, C. A., & Robinson, K. (2006). Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781. doi:10.1243/09544070jauto202

Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045

Luján, J. M., Bermúdez, V., Guardiola, C., & Abbad, A. (2010). A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal. Mechanical Systems and Signal Processing, 24(7), 2261-2275. doi:10.1016/j.ymssp.2009.12.012

Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029

Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079

Draper C. S. The physical effects of detonation in a closed cylindrical chamber. Technical report, National Advisory Committee for Aeronautics, 1938.

Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012

Hickling, R., Feldmaier, D. A., Chen, F. H. K., & Morel, J. S. (1983). Cavity resonances in engine combustion chambers and some applications. The Journal of the Acoustical Society of America, 73(4), 1170-1178. doi:10.1121/1.389261

Bodisco, T., Reeves, R., Situ, R., & Brown, R. (2012). Bayesian models for the determination of resonant frequencies in a DI diesel engine. Mechanical Systems and Signal Processing, 26, 305-314. doi:10.1016/j.ymssp.2011.06.014

Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Bares, P. (2014). Cycle by Cycle Trapped Mass Estimation for Diagnosis and Control. SAE International Journal of Engines, 7(3), 1523-1531. doi:10.4271/2014-01-1702

Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264

Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583

Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006

Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3

Samimy, B., & Rizzoni, G. (1996). Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection. Proceedings of the IEEE, 84(9), 1330-1343. doi:10.1109/5.535251

Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1

FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165

Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052

Chen, A., & Dai, X. (2010). Internal combustion engine vibration analysis with short-term Fourier-transform. 2010 3rd International Congress on Image and Signal Processing. doi:10.1109/cisp.2010.5646222

Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8

Costa, A. H., & Boudreaux-Bartels, G. F. (1999). An overview of aliasing errors in discrete-time formulations of time-frequency representations. IEEE Transactions on Signal Processing, 47(5), 1463-1474. doi:10.1109/78.757245

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem