Mostrar el registro sencillo del ítem
dc.contributor.author | Broatch Jacobi, Jaime Alberto | es_ES |
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.contributor.author | Bares-Moreno, Pau | es_ES |
dc.contributor.author | Denia Guzmán, Francisco David | es_ES |
dc.date.accessioned | 2017-05-09T07:28:59Z | |
dc.date.available | 2017-05-09T07:28:59Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1468-0874 | |
dc.identifier.uri | http://hdl.handle.net/10251/80757 | |
dc.description.abstract | [EN] Cylinder resonance phenomenon in reciprocating engines consists of high-frequency pressure oscillations excited by the combustion. The frequency of these oscillations is proportional to the speed of sound on pent-roof combustion chambers and henceforth the resonance frequency can be used to estimate the trapped mass, but in bowl-in-piston chambers a geometrical factor must be added in order to deal with the bowl disturbance. This paper applies the finite element method (FEM) to provide a resonance calibration for new design combustion chambers, which are commonly dominated by the bowl geometry near the top dead centre. The resonance calibration does not need any sensor information when it is solved by a FEM procedure, and consequently, is free from measurement errors. The calibration is proven to be independent of the chamber conditions and the results obtained are compared with experimental data by using spectral techniques and measuring precisely the trapped mass.[EN] | es_ES |
dc.description.sponsorship | This research has been partially supported by the European Union in framework of the POWERFUL project, seventh framework program FP7/2007-2013, theme 7, sustainable surface transport (grant agreement number SCP8-GA-2009-234032). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation | Sustainable surface transport, grant agreement No. SCP8-GA-2009- 234032 | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Trapped mass estimation | es_ES |
dc.subject | Pressure resonance | es_ES |
dc.subject | Combustion diagnosis | es_ES |
dc.subject | Finite element method | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087415589701 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/20072013/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/234032/EU/POWERtrain for FUture Light-duty vehicles/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Broatch Jacobi, JA.; Guardiola, C.; Bares-Moreno, P.; Denia Guzmán, FD. (2016). Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass. International Journal of Engine Research. 17(5):534-542. https://doi.org/10.1177/1468087415589701 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 534 | es_ES |
dc.description.upvformatpfin | 542 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 290746 | es_ES |
dc.identifier.eissn | 2041-3149 | |
dc.contributor.funder | European Commission | |
dc.description.references | Powell, J. D. (1993). Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 343-350. doi:10.1115/1.2899074 | es_ES |
dc.description.references | Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009 | es_ES |
dc.description.references | Finol, C. A., & Robinson, K. (2006). Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781. doi:10.1243/09544070jauto202 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045 | es_ES |
dc.description.references | Luján, J. M., Bermúdez, V., Guardiola, C., & Abbad, A. (2010). A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal. Mechanical Systems and Signal Processing, 24(7), 2261-2275. doi:10.1016/j.ymssp.2009.12.012 | es_ES |
dc.description.references | Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029 | es_ES |
dc.description.references | Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 | es_ES |
dc.description.references | Draper C. S. The physical effects of detonation in a closed cylindrical chamber. Technical report, National Advisory Committee for Aeronautics, 1938. | es_ES |
dc.description.references | Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012 | es_ES |
dc.description.references | Hickling, R., Feldmaier, D. A., Chen, F. H. K., & Morel, J. S. (1983). Cavity resonances in engine combustion chambers and some applications. The Journal of the Acoustical Society of America, 73(4), 1170-1178. doi:10.1121/1.389261 | es_ES |
dc.description.references | Bodisco, T., Reeves, R., Situ, R., & Brown, R. (2012). Bayesian models for the determination of resonant frequencies in a DI diesel engine. Mechanical Systems and Signal Processing, 26, 305-314. doi:10.1016/j.ymssp.2011.06.014 | es_ES |
dc.description.references | Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Bares, P. (2014). Cycle by Cycle Trapped Mass Estimation for Diagnosis and Control. SAE International Journal of Engines, 7(3), 1523-1531. doi:10.4271/2014-01-1702 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 | es_ES |
dc.description.references | Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583 | es_ES |
dc.description.references | Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 | es_ES |
dc.description.references | Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3 | es_ES |
dc.description.references | Samimy, B., & Rizzoni, G. (1996). Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection. Proceedings of the IEEE, 84(9), 1330-1343. doi:10.1109/5.535251 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 | es_ES |
dc.description.references | FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052 | es_ES |
dc.description.references | Chen, A., & Dai, X. (2010). Internal combustion engine vibration analysis with short-term Fourier-transform. 2010 3rd International Congress on Image and Signal Processing. doi:10.1109/cisp.2010.5646222 | es_ES |
dc.description.references | Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8 | es_ES |
dc.description.references | Costa, A. H., & Boudreaux-Bartels, G. F. (1999). An overview of aliasing errors in discrete-time formulations of time-frequency representations. IEEE Transactions on Signal Processing, 47(5), 1463-1474. doi:10.1109/78.757245 | es_ES |