- -

Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Broatch Jacobi, Jaime Alberto es_ES
dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Bares-Moreno, Pau es_ES
dc.contributor.author Denia Guzmán, Francisco David es_ES
dc.date.accessioned 2017-05-09T07:28:59Z
dc.date.available 2017-05-09T07:28:59Z
dc.date.issued 2016
dc.identifier.issn 1468-0874
dc.identifier.uri http://hdl.handle.net/10251/80757
dc.description.abstract [EN] Cylinder resonance phenomenon in reciprocating engines consists of high-frequency pressure oscillations excited by the combustion. The frequency of these oscillations is proportional to the speed of sound on pent-roof combustion chambers and henceforth the resonance frequency can be used to estimate the trapped mass, but in bowl-in-piston chambers a geometrical factor must be added in order to deal with the bowl disturbance. This paper applies the finite element method (FEM) to provide a resonance calibration for new design combustion chambers, which are commonly dominated by the bowl geometry near the top dead centre. The resonance calibration does not need any sensor information when it is solved by a FEM procedure, and consequently, is free from measurement errors. The calibration is proven to be independent of the chamber conditions and the results obtained are compared with experimental data by using spectral techniques and measuring precisely the trapped mass.[EN] es_ES
dc.description.sponsorship This research has been partially supported by the European Union in framework of the POWERFUL project, seventh framework program FP7/2007-2013, theme 7, sustainable surface transport (grant agreement number SCP8-GA-2009-234032). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation Sustainable surface transport, grant agreement No. SCP8-GA-2009- 234032 es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Trapped mass estimation es_ES
dc.subject Pressure resonance es_ES
dc.subject Combustion diagnosis es_ES
dc.subject Finite element method es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087415589701
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/20072013/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/234032/EU/POWERtrain for FUture Light-duty vehicles/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Broatch Jacobi, JA.; Guardiola, C.; Bares-Moreno, P.; Denia Guzmán, FD. (2016). Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass. International Journal of Engine Research. 17(5):534-542. https://doi.org/10.1177/1468087415589701 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 534 es_ES
dc.description.upvformatpfin 542 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 290746 es_ES
dc.identifier.eissn 2041-3149
dc.contributor.funder European Commission
dc.description.references Powell, J. D. (1993). Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 343-350. doi:10.1115/1.2899074 es_ES
dc.description.references Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009 es_ES
dc.description.references Finol, C. A., & Robinson, K. (2006). Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781. doi:10.1243/09544070jauto202 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045 es_ES
dc.description.references Luján, J. M., Bermúdez, V., Guardiola, C., & Abbad, A. (2010). A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal. Mechanical Systems and Signal Processing, 24(7), 2261-2275. doi:10.1016/j.ymssp.2009.12.012 es_ES
dc.description.references Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029 es_ES
dc.description.references Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 es_ES
dc.description.references Draper C. S. The physical effects of detonation in a closed cylindrical chamber. Technical report, National Advisory Committee for Aeronautics, 1938. es_ES
dc.description.references Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012 es_ES
dc.description.references Hickling, R., Feldmaier, D. A., Chen, F. H. K., & Morel, J. S. (1983). Cavity resonances in engine combustion chambers and some applications. The Journal of the Acoustical Society of America, 73(4), 1170-1178. doi:10.1121/1.389261 es_ES
dc.description.references Bodisco, T., Reeves, R., Situ, R., & Brown, R. (2012). Bayesian models for the determination of resonant frequencies in a DI diesel engine. Mechanical Systems and Signal Processing, 26, 305-314. doi:10.1016/j.ymssp.2011.06.014 es_ES
dc.description.references Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Bares, P. (2014). Cycle by Cycle Trapped Mass Estimation for Diagnosis and Control. SAE International Journal of Engines, 7(3), 1523-1531. doi:10.4271/2014-01-1702 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 es_ES
dc.description.references Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3 es_ES
dc.description.references Samimy, B., & Rizzoni, G. (1996). Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection. Proceedings of the IEEE, 84(9), 1330-1343. doi:10.1109/5.535251 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165 es_ES
dc.description.references Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052 es_ES
dc.description.references Chen, A., & Dai, X. (2010). Internal combustion engine vibration analysis with short-term Fourier-transform. 2010 3rd International Congress on Image and Signal Processing. doi:10.1109/cisp.2010.5646222 es_ES
dc.description.references Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8 es_ES
dc.description.references Costa, A. H., & Boudreaux-Bartels, G. F. (1999). An overview of aliasing errors in discrete-time formulations of time-frequency representations. IEEE Transactions on Signal Processing, 47(5), 1463-1474. doi:10.1109/78.757245 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem