- -

Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc

Show full item record

Campos, C.; Román Moltó, JE. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing. 38(5):385-411. https://doi.org/10.1137/15M1022458

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80768

Files in this item

Item Metadata

Title: Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc
Author: Campos, Carmen Román Moltó, José Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
Polynomial eigenvalue problems are often found in scientific computing applications. When the coefficient matrices of the polynomial are large and sparse, usually only a few eigenpairs are required and projection methods ...[+]
Subjects: Matrix polynomial , Eigenvalues , Companion linearization , Krylov subspace , Nonmonomial bases , Spectral transformation , Parallel computing , SLEPc
Copyrigths: Reserva de todos los derechos
Source:
SIAM Journal on Scientific Computing. (issn: 1064-8275 )
DOI: 10.1137/15M1022458
Publisher:
Society for Industrial and Applied Mathematics
Publisher version: http://dx.doi.org/10.1137/15M1022458
Project ID:
info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/
info:eu-repo/grantAgreement/MECD//AP2012-0608/ES/AP2012-0608/
Thanks:
The first author was supported by the Spanish Ministry of Education, Culture and Sport through an FPU grant with reference AP2012-0608.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record