Mostrar el registro sencillo del ítem
dc.contributor.author | Campos, Carmen | es_ES |
dc.contributor.author | Román Moltó, José Enrique | es_ES |
dc.date.accessioned | 2017-05-09T11:14:14Z | |
dc.date.available | 2017-05-09T11:14:14Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.uri | http://hdl.handle.net/10251/80768 | |
dc.description.abstract | Polynomial eigenvalue problems are often found in scientific computing applications. When the coefficient matrices of the polynomial are large and sparse, usually only a few eigenpairs are required and projection methods are the best choice. We focus on Krylov methods that operate on the companion linearization of the polynomial but exploit the block structure with the aim of being memory-efficient in the representation of the Krylov subspace basis. The problem may appear in the form of a low-degree polynomial (quartic or quintic, say) expressed in the monomial basis, or a high-degree polynomial (coming from interpolation of a nonlinear eigenproblem) expressed in a nonmonomial basis. We have implemented a parallel solver in SLEPc covering both cases that is able to compute exterior as well as interior eigenvalues via spectral transformation. We discuss important issues such as scaling and restart and illustrate the robustness and performance of the solver with some numerical experiments. | es_ES |
dc.description.sponsorship | The first author was supported by the Spanish Ministry of Education, Culture and Sport through an FPU grant with reference AP2012-0608. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.relation.ispartof | SIAM Journal on Scientific Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Matrix polynomial | es_ES |
dc.subject | Eigenvalues | es_ES |
dc.subject | Companion linearization | es_ES |
dc.subject | Krylov subspace | es_ES |
dc.subject | Nonmonomial bases | es_ES |
dc.subject | Spectral transformation | es_ES |
dc.subject | Parallel computing | es_ES |
dc.subject | SLEPc | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1137/15M1022458 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2012-0608/ES/AP2012-0608/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Campos, C.; Román Moltó, JE. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing. 38(5):385-411. https://doi.org/10.1137/15M1022458 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1137/15M1022458 | es_ES |
dc.description.upvformatpinicio | 385 | es_ES |
dc.description.upvformatpfin | 411 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 321202 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |