- -

Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2017-05-09T11:14:14Z
dc.date.available 2017-05-09T11:14:14Z
dc.date.issued 2016
dc.identifier.issn 1064-8275
dc.identifier.uri http://hdl.handle.net/10251/80768
dc.description.abstract Polynomial eigenvalue problems are often found in scientific computing applications. When the coefficient matrices of the polynomial are large and sparse, usually only a few eigenpairs are required and projection methods are the best choice. We focus on Krylov methods that operate on the companion linearization of the polynomial but exploit the block structure with the aim of being memory-efficient in the representation of the Krylov subspace basis. The problem may appear in the form of a low-degree polynomial (quartic or quintic, say) expressed in the monomial basis, or a high-degree polynomial (coming from interpolation of a nonlinear eigenproblem) expressed in a nonmonomial basis. We have implemented a parallel solver in SLEPc covering both cases that is able to compute exterior as well as interior eigenvalues via spectral transformation. We discuss important issues such as scaling and restart and illustrate the robustness and performance of the solver with some numerical experiments. es_ES
dc.description.sponsorship The first author was supported by the Spanish Ministry of Education, Culture and Sport through an FPU grant with reference AP2012-0608. en_EN
dc.language Inglés es_ES
dc.publisher Society for Industrial and Applied Mathematics es_ES
dc.relation.ispartof SIAM Journal on Scientific Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Matrix polynomial es_ES
dc.subject Eigenvalues es_ES
dc.subject Companion linearization es_ES
dc.subject Krylov subspace es_ES
dc.subject Nonmonomial bases es_ES
dc.subject Spectral transformation es_ES
dc.subject Parallel computing es_ES
dc.subject SLEPc es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1137/15M1022458
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2012-0608/ES/AP2012-0608/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Campos, C.; Román Moltó, JE. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing. 38(5):385-411. https://doi.org/10.1137/15M1022458 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1137/15M1022458 es_ES
dc.description.upvformatpinicio 385 es_ES
dc.description.upvformatpfin 411 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 321202 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem