- -

Genetic basis of long shelf life and variability into Penjar tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic basis of long shelf life and variability into Penjar tomato

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casals, Joan es_ES
dc.contributor.author Pascual Bañuls, Laura es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.contributor.author CASAÑAS, F. es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.date.accessioned 2017-05-10T10:16:14Z
dc.date.available 2017-05-10T10:16:14Z
dc.date.issued 2012-02
dc.identifier.issn 0925-9864
dc.identifier.uri http://hdl.handle.net/10251/80807
dc.description.abstract [EN] Penjar tomato is a varietal type cultivated in northeast Spain that characteristically has a long shelf life, small fruit, and wide morphological variability among cultivars. To determine the genetic basis for the long shelf life in the Penjar varietal type and to describe the genetic background and agromorphologic characteristics of the group, we studied 27 Penjar accessions representative of the entire range of variation in traits related to agronomic behavior, fruit morphology, and sensory quality. We found that the long shelf life of Penjar (mean: 126.8 days) is due to the ripening mutant alcoba double dagger a (alc), and the molecular basis of this mutation is the replacement of thymine by adenine in position 317 of the coding sequence of the NAC.NOR gene; thus, alcoba double dagger a (alc) is an allele of non-ripening (nor). The amplified fragment length polymorphism (AFLP) study found 18.07% polymorphic loci within the Penjar varietal type, which is higher than usual in landraces. The variation in agronomic and morphologic traits between accessions was also very high; thus, the heterogeneity of the Penjar group probably results from the introduction of the allele alc in distinct landraces. Our results also show that in germplasm containing the alc mutation shelf life is negatively correlated with fruit size (weight, width, length, and number of locules); thus, the predominance of small fruit within the varietal type is probably the result of this trait being dragged along in the selection for long shelf life. es_ES
dc.description.sponsorship This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentacio de la Comunidad Valenciana, the Fundacion de la Comunidad Valenciana para la Investigacion Agroalimentaria (AGROALIMED) and from the Departament d'Agricultura, Alimentacio i Accio Rural (DAR) de la Generalitat de Catalunya. We thank Dr. Ll. Bosch for his collaboration in this study. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Genetic Resources and Crop Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alcobaça es_ES
dc.subject Penjar tomato es_ES
dc.subject Ripening mutants es_ES
dc.subject Shelf life es_ES
dc.subject Tomato landrace es_ES
dc.subject.classification GENETICA es_ES
dc.title Genetic basis of long shelf life and variability into Penjar tomato es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10722-011-9677-6
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Casals, J.; Pascual Bañuls, L.; Cañizares Sales, J.; Cebolla Cornejo, J.; Casañas, F.; Nuez Viñals, F. (2012). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution. 59(2):219-229. doi:10.1007/s10722-011-9677-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10722-011-9677-6 es_ES
dc.description.upvformatpinicio 219 es_ES
dc.description.upvformatpfin 229 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 205506 es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Fundación de la Comunitat Valenciana para la Investigación Agroalimentaria, Agroalimed
dc.contributor.funder Generalitat de Catalunya
dc.description.references Alba R, Payton P, Feiz ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17(1):2954–2965 es_ES
dc.description.references Almeida JLF (1961) Um novo aspecto de melhoramento do tomate. Agricultura 10:43–44 es_ES
dc.description.references Atanassova B, Georgiev H (2007) Expression of heterosis by hybridization. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Volume 2: tomato. Science Publishers, New Hampshire, pp 113–152 es_ES
dc.description.references Brady CJ, MacAlpine G, McGlasson WB, Veda Y (1982) Polygalacturonase in tomato fruits and the induction of ripening. Aust J Plant Physiol 9(2):171–178 es_ES
dc.description.references Buescher RW, Sistrunk WA, Tigchelaar EC, Ng TJ (1976) Softening, pectolytic activity, and storage-life of rin and nor tomato hybrids. HortScience 11:603–604 es_ES
dc.description.references Buntjer JB (2001) PhylTools (phylogenetic computer tools) version 1.32. Laboratory of Plant Breeding, Wageningen Agriculture University, Netherlands es_ES
dc.description.references Chetelat RT (2002) Revised list of monogenic stocks. Tomato Genet Coop Rep 52:41–62 es_ES
dc.description.references Dellaporta SJ, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Reporter 1:19–21 es_ES
dc.description.references Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302 es_ES
dc.description.references Garg N, Cheema DS, Pathak D (2008) Heterosis breeding in tomato involving rin, nor and alc alleles: a review of literature. Adv Hortic Sci 22(1):54–62 es_ES
dc.description.references Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180 es_ES
dc.description.references Giovannoni JJ, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Gen 98(6–7):1005–1013 es_ES
dc.description.references Giovannoni JJ, Tanksley SD, Vrebalov J, Noensie E (2004) NOR gene for use in manipulation of fruit quality and ethylene response. US Patent No. 5,234,834 issued 13 July 2004 es_ES
dc.description.references IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome es_ES
dc.description.references Kopeliovitch E, Mizrahi Y, Rabinowitch HD, Kedar N (1982) Effect of the fruit-ripening mutant-genes rin and nor on the flavor of tomato fruit. J Am Soc Hortic Sci 107:361–364 es_ES
dc.description.references Kosma DK, Parsons EP, Isaacson T, Lü S, Rose JKC, Jenks MA (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117 es_ES
dc.description.references Leal NR, Tabim MH (1974) Testes de conservaçâo natural pôs-colheita, além dos 300 dias, de frutos de alguns cultivares de tomateiro (Lycopersicon esculentum) e híbridos destes com “alcobaça”. Rev Ceres 21(116):310–328 es_ES
dc.description.references Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6(11):2424–2435 es_ES
dc.description.references Lobo M, Bassett MJ, Hannah LC (1984) Inheritance and characterization of the fruit ripening mutation in alcobaca tomato. J Am Soc Hortic Sci 109:741–745 es_ES
dc.description.references McGlasson WB, Last JH, Shaw KJ, Meldrum SK (1987) Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. HortScience 22:632–634 es_ES
dc.description.references Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53(377):2023–2030 es_ES
dc.description.references Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley S (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317 es_ES
dc.description.references Mutschler MA (1984a) Inheritance and linkage of the alcobaca ripening mutant in tomato. J Am Soc Hortic Sci 109:500–503 es_ES
dc.description.references Mutschler MA (1984b) Ripening and storage characteristics of the alcobaca mutant in tomato. J Am Soc Hortic Sci 109:504–507 es_ES
dc.description.references Mutschler M, Guttieri M, Kinzer S, Grierson D, Tucker G (1988) Changes in ripening-related processes in tomato conditioned by the alc mutant. Theor Appl Gen 76:285–292 es_ES
dc.description.references Mutschler MA, Wolfe DW, Cobb ED, Yourstone KS (1992) Tomato fruit-quality and shelf-life in hybrids heterozygous for the alc ripening mutant. HortScience 27:352–355 es_ES
dc.description.references Ng TJ, Tigchelaar EC (1977) Action of non-ripening (nor) mutant on fruit ripening of tomato. J Am Soc Hortic Sci 102:504–509 es_ES
dc.description.references Nuez F (1996) Catálogo de semillas de tomate. Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid es_ES
dc.description.references Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exo Bot 58:3841–3852 es_ES
dc.description.references Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518 es_ES
dc.description.references Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382 es_ES
dc.description.references Robinson RW, Tomes ML (1968) Ripening inhibitor: a gene with multiple effects on ripening. Tomato Genet Coop Rep 18:36–37 es_ES
dc.description.references Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Ren XL, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JKC (2007) A re-evaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028 es_ES
dc.description.references SAS Institute (1999) SAS/STAT® user’s guide, version 8. SAS Institute Inc, Cary, NC es_ES
dc.description.references Schuelter AR, Casaliv WD, Cruz CD, Finger FL, Amaral AT, Shimoya A (2001) Biometrical analysis of a mutant that increases shelf-life of tomato fruits. Crop Breed Appl Biotechnol 1:44–53 es_ES
dc.description.references Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San Francisco es_ES
dc.description.references SPSS for Windows (1997) Version 8.0.0. SPSS Inc, Chicago es_ES
dc.description.references Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRS and SNPs in Lycopersicon esculentum. Cell Mol Bio Lett 7(2A):583–597 es_ES
dc.description.references Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831 es_ES
dc.description.references Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–389 es_ES
dc.description.references Tigchelaar ECM, Tomes ML, Kerr EA, Barman RJ (1973) A new fruit ripening mutant, non-ripening (nor). Tomato Genet Coop Rep 23:33 es_ES
dc.description.references Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346 es_ES
dc.description.references Williams CE, St Clair DA (1993) Phenetic relationships and levels of variability detected by restriction-fragment-length-polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem