- -

Genetic basis of long shelf life and variability into Penjar tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic basis of long shelf life and variability into Penjar tomato

Mostrar el registro completo del ítem

Casals, J.; Pascual Bañuls, L.; Cañizares Sales, J.; Cebolla Cornejo, J.; Casañas, F.; Nuez Viñals, F. (2012). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution. 59(2):219-229. doi:10.1007/s10722-011-9677-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80807

Ficheros en el ítem

Metadatos del ítem

Título: Genetic basis of long shelf life and variability into Penjar tomato
Autor: Casals, Joan Pascual Bañuls, Laura Cañizares Sales, Joaquín Cebolla Cornejo, Jaime CASAÑAS, F. Nuez Viñals, Fernando
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Penjar tomato is a varietal type cultivated in northeast Spain that characteristically has a long shelf life, small fruit, and wide morphological variability among cultivars. To determine the genetic basis for the ...[+]
Palabras clave: Alcobaça , Penjar tomato , Ripening mutants , Shelf life , Tomato landrace
Derechos de uso: Cerrado
Fuente:
Genetic Resources and Crop Evolution. (issn: 0925-9864 )
DOI: 10.1007/s10722-011-9677-6
Editorial:
Springer Verlag (Germany)
Versión del editor: http://doi.org/10.1007/s10722-011-9677-6
Agradecimientos:
This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentacio de la Comunidad Valenciana, the Fundacion de la Comunidad Valenciana para la Investigacion Agroalimentaria (AGROALIMED) and from ...[+]
Tipo: Artículo

References

Alba R, Payton P, Feiz ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17(1):2954–2965

Almeida JLF (1961) Um novo aspecto de melhoramento do tomate. Agricultura 10:43–44

Atanassova B, Georgiev H (2007) Expression of heterosis by hybridization. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Volume 2: tomato. Science Publishers, New Hampshire, pp 113–152 [+]
Alba R, Payton P, Feiz ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17(1):2954–2965

Almeida JLF (1961) Um novo aspecto de melhoramento do tomate. Agricultura 10:43–44

Atanassova B, Georgiev H (2007) Expression of heterosis by hybridization. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Volume 2: tomato. Science Publishers, New Hampshire, pp 113–152

Brady CJ, MacAlpine G, McGlasson WB, Veda Y (1982) Polygalacturonase in tomato fruits and the induction of ripening. Aust J Plant Physiol 9(2):171–178

Buescher RW, Sistrunk WA, Tigchelaar EC, Ng TJ (1976) Softening, pectolytic activity, and storage-life of rin and nor tomato hybrids. HortScience 11:603–604

Buntjer JB (2001) PhylTools (phylogenetic computer tools) version 1.32. Laboratory of Plant Breeding, Wageningen Agriculture University, Netherlands

Chetelat RT (2002) Revised list of monogenic stocks. Tomato Genet Coop Rep 52:41–62

Dellaporta SJ, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Reporter 1:19–21

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

Garg N, Cheema DS, Pathak D (2008) Heterosis breeding in tomato involving rin, nor and alc alleles: a review of literature. Adv Hortic Sci 22(1):54–62

Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

Giovannoni JJ, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Gen 98(6–7):1005–1013

Giovannoni JJ, Tanksley SD, Vrebalov J, Noensie E (2004) NOR gene for use in manipulation of fruit quality and ethylene response. US Patent No. 5,234,834 issued 13 July 2004

IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome

Kopeliovitch E, Mizrahi Y, Rabinowitch HD, Kedar N (1982) Effect of the fruit-ripening mutant-genes rin and nor on the flavor of tomato fruit. J Am Soc Hortic Sci 107:361–364

Kosma DK, Parsons EP, Isaacson T, Lü S, Rose JKC, Jenks MA (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117

Leal NR, Tabim MH (1974) Testes de conservaçâo natural pôs-colheita, além dos 300 dias, de frutos de alguns cultivares de tomateiro (Lycopersicon esculentum) e híbridos destes com “alcobaça”. Rev Ceres 21(116):310–328

Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6(11):2424–2435

Lobo M, Bassett MJ, Hannah LC (1984) Inheritance and characterization of the fruit ripening mutation in alcobaca tomato. J Am Soc Hortic Sci 109:741–745

McGlasson WB, Last JH, Shaw KJ, Meldrum SK (1987) Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. HortScience 22:632–634

Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53(377):2023–2030

Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley S (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

Mutschler MA (1984a) Inheritance and linkage of the alcobaca ripening mutant in tomato. J Am Soc Hortic Sci 109:500–503

Mutschler MA (1984b) Ripening and storage characteristics of the alcobaca mutant in tomato. J Am Soc Hortic Sci 109:504–507

Mutschler M, Guttieri M, Kinzer S, Grierson D, Tucker G (1988) Changes in ripening-related processes in tomato conditioned by the alc mutant. Theor Appl Gen 76:285–292

Mutschler MA, Wolfe DW, Cobb ED, Yourstone KS (1992) Tomato fruit-quality and shelf-life in hybrids heterozygous for the alc ripening mutant. HortScience 27:352–355

Ng TJ, Tigchelaar EC (1977) Action of non-ripening (nor) mutant on fruit ripening of tomato. J Am Soc Hortic Sci 102:504–509

Nuez F (1996) Catálogo de semillas de tomate. Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid

Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exo Bot 58:3841–3852

Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518

Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382

Robinson RW, Tomes ML (1968) Ripening inhibitor: a gene with multiple effects on ripening. Tomato Genet Coop Rep 18:36–37

Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Ren XL, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JKC (2007) A re-evaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028

SAS Institute (1999) SAS/STAT® user’s guide, version 8. SAS Institute Inc, Cary, NC

Schuelter AR, Casaliv WD, Cruz CD, Finger FL, Amaral AT, Shimoya A (2001) Biometrical analysis of a mutant that increases shelf-life of tomato fruits. Crop Breed Appl Biotechnol 1:44–53

Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San Francisco

SPSS for Windows (1997) Version 8.0.0. SPSS Inc, Chicago

Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRS and SNPs in Lycopersicon esculentum. Cell Mol Bio Lett 7(2A):583–597

Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–389

Tigchelaar ECM, Tomes ML, Kerr EA, Barman RJ (1973) A new fruit ripening mutant, non-ripening (nor). Tomato Genet Coop Rep 23:33

Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

Williams CE, St Clair DA (1993) Phenetic relationships and levels of variability detected by restriction-fragment-length-polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem