- -

Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm

Mostrar el registro completo del ítem

Rosello Ripolles, S.; Adalid Martínez, AM.; Cebolla Cornejo, J.; Nuez Viñals, F. (2011). Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture. 91(6):1014-1021. https://doi.org/10.1002/jsfa.4276

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81267

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm
Autor: Rosello Ripolles, Salvador Adalid Martínez, Ana Maria Cebolla Cornejo, Jaime Nuez Viñals, Fernando
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] BACKGROUND: Tomatoes are an important source of antioxidants (carotenoids, vitamin C, etc.) owing to their high level of consumption. There is great interest in developing cultivars with increased levels of lycopene, ...[+]
Palabras clave: SS-carotene , Functional quality , Genetic resources , Linear mixed models , Lycopene , Solanum section Lycopersicon , Vitamin C , Ascorbic acid , Beta carotene , Carotenoid , Algorithm , Article , Chimera , Comparative study , Crop , Environmental aspects and related phenomena , Fruit , Genetics , Genotype , Growth, development and aging , Hybridization , Metabolism , Physiological stress , Plant gene , Season , Solanum , Spain , Sunlight , Tomato , Algorithms , Carotenoids , Crops, Agricultural , Ecological and Environmental Processes , Genes, Plant , Hybridization, Genetic , Lycopersicon esculentum , Seasons , Stress, Physiological , Lycopersicon
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 ) (eissn: 1097-0010 )
DOI: 10.1002/jsfa.4276
Editorial:
Wiley
Versión del editor: http://doi.org/10.1002/jsfa.4276
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//AGL2005-08083-C03-01/ES/MEJORA DE LA CALIDAD ORGANOLEPTICA Y NUTRITIVA DEL TOMATE/
Agradecimientos:
This research was financed by the Spanish Ministry of Science and Innovation (MICINN) (project AGL2005-08083-C03-01). The authors thank Professor Jun Zhu, director of the Bioinformatics Institute, Zhejiang University, ...[+]
Tipo: Artículo

References

Bouma, J., Varallyay, G., & Batjes, N. . (1998). Principal land use changes anticipated in Europe. Agriculture, Ecosystems & Environment, 67(2-3), 103-119. doi:10.1016/s0167-8809(97)00109-6

Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2-3), 181-188. doi:10.1016/s0260-8774(02)00247-9

Beecher, G. R. (1998). Nutrient Content of Tomatoes and Tomato Products. Experimental Biology and Medicine, 218(2), 98-100. doi:10.3181/00379727-218-44282a [+]
Bouma, J., Varallyay, G., & Batjes, N. . (1998). Principal land use changes anticipated in Europe. Agriculture, Ecosystems & Environment, 67(2-3), 103-119. doi:10.1016/s0167-8809(97)00109-6

Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2-3), 181-188. doi:10.1016/s0260-8774(02)00247-9

Beecher, G. R. (1998). Nutrient Content of Tomatoes and Tomato Products. Experimental Biology and Medicine, 218(2), 98-100. doi:10.3181/00379727-218-44282a

Mayne, S. T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. The FASEB Journal, 10(7), 690-701. doi:10.1096/fasebj.10.7.8635686

Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Piro, G., & Dalessandro, G. (2007). CAROTENOIDS CONTENT IN RIPE RAW AND PROCESSED (SAUCE) BERRIES OF HIGH PIGMENT TOMATO HYBRIDS. Acta Horticulturae, (758), 173-180. doi:10.17660/actahortic.2007.758.19

Stevens, M. A., & Rick, C. M. (1986). Genetics and breeding. The Tomato Crop, 35-109. doi:10.1007/978-94-009-3137-4_2

Hanson, P. M., Yang, R., Wu, J., Chen, J., Ledesma, D., Tsou, S. C. S., & Lee, T.-C. (2004). Variation for Antioxidant Activity and Antioxidants in Tomato. Journal of the American Society for Horticultural Science, 129(5), 704-711. doi:10.21273/jashs.129.5.0704

Abushita, A. A., Daood, H. G., & Biacs, P. A. (2000). Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Journal of Agricultural and Food Chemistry, 48(6), 2075-2081. doi:10.1021/jf990715p

Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001

Hamner, K. C., Bernstein, L., & Maynard, L. A. (1945). Effects of Light Intensity, Day Length, Temperature, and Other Environmental Factors on the Ascorbic Acid Content of Tomatoes. The Journal of Nutrition, 29(2), 85-97. doi:10.1093/jn/29.2.85

Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205

Lavi, N., Tadmor, Y., Meir, A., Bechar, A., Oren-Shamir, M., Ovadia, R., … Levin, I. (2009). Characterization of theINTENSE PIGMENTTomato Genotype Emphasizing Targeted Fruit Metabolites and Chloroplast Biogenesis. Journal of Agricultural and Food Chemistry, 57(11), 4818-4826. doi:10.1021/jf900190r

Galiana-Balaguer, L., Roselló, S., Herrero-Martı́nez, J. M., Maquieira, A., & Nuez, F. (2001). Determination of -Ascorbic Acid in Lycopersicon Fruits by Capillary Zone Electrophoresis. Analytical Biochemistry, 296(2), 218-224. doi:10.1006/abio.2001.5297

Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944

Rao, C. R. (1971). Estimation of variance and covariance components—MINQUE theory. Journal of Multivariate Analysis, 1(3), 257-275. doi:10.1016/0047-259x(71)90001-7

Benjamini, Y., & Hochberg, Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1), 60-83. doi:10.3102/10769986025001060

Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827

Gould, W. A. (1992). Tomato Production, Processing and Technology. doi:10.1533/9781845696146

Shigeoka, S. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305-1319. doi:10.1093/jexbot/53.372.1305

Adalid, A. M., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2008). EVALUATION AND SELECTION OF LYCOPERSICON ACCESSIONS FOR HIGH CAROTENOID AND VITAMIN C CONTENT. Acta Horticulturae, (789), 221-228. doi:10.17660/actahortic.2008.789.30

Leoni, C. (1992). INDUSTRIAL QUALITY AS INFLUENCED BY CROP MANAGEMENT. Acta Horticulturae, (301), 177-184. doi:10.17660/actahortic.1992.301.20

Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549

McCOLLUM, J. P. (1954). EFFECTS OF LIGHT ON THE FORMATION OF CAROTENOIDS IN TOMATO FRUITS. Journal of Food Science, 19(1-6), 182-189. doi:10.1111/j.1365-2621.1954.tb17437.x

Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1

LIPTAY, A., PAPADOPOULOS, A. P., BRYAN, H. H., & GULL, D. (1986). Ascorbic acid levels in tomato (Lycopersicon esculentum Mill.) at low temperatures. Agricultural and Biological Chemistry, 50(12), 3185-3187. doi:10.1271/bbb1961.50.3185

Adegoroye, A. S., & Jolliffe, P. A. (1987). Some inhibitory effects of radiation stress on tomato fruit ripening. Journal of the Science of Food and Agriculture, 39(4), 297-302. doi:10.1002/jsfa.2740390404

Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4(3), 210-218. doi:10.1016/s1369-5266(00)00163-1

Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem