Mostrar el registro sencillo del ítem
dc.contributor.author | Rosello Ripolles, Salvador | es_ES |
dc.contributor.author | Adalid Martínez, Ana Maria | es_ES |
dc.contributor.author | Cebolla Cornejo, Jaime | es_ES |
dc.contributor.author | Nuez Viñals, Fernando | es_ES |
dc.date.accessioned | 2017-05-17T09:40:29Z | |
dc.date.available | 2017-05-17T09:40:29Z | |
dc.date.issued | 2011-04 | |
dc.identifier.issn | 0022-5142 | |
dc.identifier.uri | http://hdl.handle.net/10251/81267 | |
dc.description.abstract | [EN] BACKGROUND: Tomatoes are an important source of antioxidants (carotenoids, vitamin C, etc.) owing to their high level of consumption. There is great interest in developing cultivars with increased levels of lycopene, beta-carotene or L-ascorbic acid. There is necessary to survey new sources of variation. In this study, the potential of improvement for each character in tomato breeding programmes, in a single or joint approach, and the nature of genotype (G), environment (E) and G x E interaction effects in the expression of these characters were investigated. RESULTS: The content of lycopene, beta-carotene and ascorbic acid determined was very high in some phenotypes (up to 281, 35 and 346 mg kg(-1) respectively). The important differences in the three environments studied (with some stressing conditions in several situations) had a remarkable influence in the phenotypic expression of the functional characters evaluated. Nevertheless, the major contribution came from the genotypic effect along with a considerable G x E interaction. CONCLUSION: The joint accumulation of lycopene and beta-carotene has a high genetic component. It is possible to select elite genotypes with high content of both carotenoids in tomato breeding programmes but multi-environment trials are recommended. The improvement of ascorbic acid content is more difficult because the interference of uncontrolled factors mask the real genetic potential. Among the accessions evaluated, there are four accessions with an amazing genetic potential for functional properties that can be used as donor parents in tomato breeding programmes or for direct consumption in quality markets. (C) 2011 Society of Chemical Industry | es_ES |
dc.description.sponsorship | This research was financed by the Spanish Ministry of Science and Innovation (MICINN) (project AGL2005-08083-C03-01). The authors thank Professor Jun Zhu, director of the Bioinformatics Institute, Zhejiang University, China, for his comments and for the software used in the data analyses. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SS-carotene | es_ES |
dc.subject | Functional quality | es_ES |
dc.subject | Genetic resources | es_ES |
dc.subject | Linear mixed models | es_ES |
dc.subject | Lycopene | es_ES |
dc.subject | Solanum section Lycopersicon | es_ES |
dc.subject | Vitamin C | es_ES |
dc.subject | Ascorbic acid | es_ES |
dc.subject | Beta carotene | es_ES |
dc.subject | Carotenoid | es_ES |
dc.subject | Algorithm | es_ES |
dc.subject | Article | es_ES |
dc.subject | Chimera | es_ES |
dc.subject | Comparative study | es_ES |
dc.subject | Crop | es_ES |
dc.subject | Environmental aspects and related phenomena | es_ES |
dc.subject | Fruit | es_ES |
dc.subject | Genetics | es_ES |
dc.subject | Genotype | es_ES |
dc.subject | Growth, development and aging | es_ES |
dc.subject | Hybridization | es_ES |
dc.subject | Metabolism | es_ES |
dc.subject | Physiological stress | es_ES |
dc.subject | Plant gene | es_ES |
dc.subject | Season | es_ES |
dc.subject | Solanum | es_ES |
dc.subject | Spain | es_ES |
dc.subject | Sunlight | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Carotenoids | es_ES |
dc.subject | Crops, Agricultural | es_ES |
dc.subject | Ecological and Environmental Processes | es_ES |
dc.subject | Genes, Plant | es_ES |
dc.subject | Hybridization, Genetic | es_ES |
dc.subject | Lycopersicon esculentum | es_ES |
dc.subject | Seasons | es_ES |
dc.subject | Stress, Physiological | es_ES |
dc.subject | Lycopersicon | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.4276 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2005-08083-C03-01/ES/MEJORA DE LA CALIDAD ORGANOLEPTICA Y NUTRITIVA DEL TOMATE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Rosello Ripolles, S.; Adalid Martínez, AM.; Cebolla Cornejo, J.; Nuez Viñals, F. (2011). Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture. 91(6):1014-1021. https://doi.org/10.1002/jsfa.4276 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/jsfa.4276 | es_ES |
dc.description.upvformatpinicio | 1014 | es_ES |
dc.description.upvformatpfin | 1021 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 206196 | es_ES |
dc.identifier.eissn | 1097-0010 | |
dc.identifier.pmid | 21328350 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Bouma, J., Varallyay, G., & Batjes, N. . (1998). Principal land use changes anticipated in Europe. Agriculture, Ecosystems & Environment, 67(2-3), 103-119. doi:10.1016/s0167-8809(97)00109-6 | es_ES |
dc.description.references | Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2-3), 181-188. doi:10.1016/s0260-8774(02)00247-9 | es_ES |
dc.description.references | Beecher, G. R. (1998). Nutrient Content of Tomatoes and Tomato Products. Experimental Biology and Medicine, 218(2), 98-100. doi:10.3181/00379727-218-44282a | es_ES |
dc.description.references | Mayne, S. T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. The FASEB Journal, 10(7), 690-701. doi:10.1096/fasebj.10.7.8635686 | es_ES |
dc.description.references | Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Piro, G., & Dalessandro, G. (2007). CAROTENOIDS CONTENT IN RIPE RAW AND PROCESSED (SAUCE) BERRIES OF HIGH PIGMENT TOMATO HYBRIDS. Acta Horticulturae, (758), 173-180. doi:10.17660/actahortic.2007.758.19 | es_ES |
dc.description.references | Stevens, M. A., & Rick, C. M. (1986). Genetics and breeding. The Tomato Crop, 35-109. doi:10.1007/978-94-009-3137-4_2 | es_ES |
dc.description.references | Hanson, P. M., Yang, R., Wu, J., Chen, J., Ledesma, D., Tsou, S. C. S., & Lee, T.-C. (2004). Variation for Antioxidant Activity and Antioxidants in Tomato. Journal of the American Society for Horticultural Science, 129(5), 704-711. doi:10.21273/jashs.129.5.0704 | es_ES |
dc.description.references | Abushita, A. A., Daood, H. G., & Biacs, P. A. (2000). Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Journal of Agricultural and Food Chemistry, 48(6), 2075-2081. doi:10.1021/jf990715p | es_ES |
dc.description.references | Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001 | es_ES |
dc.description.references | Hamner, K. C., Bernstein, L., & Maynard, L. A. (1945). Effects of Light Intensity, Day Length, Temperature, and Other Environmental Factors on the Ascorbic Acid Content of Tomatoes. The Journal of Nutrition, 29(2), 85-97. doi:10.1093/jn/29.2.85 | es_ES |
dc.description.references | Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 | es_ES |
dc.description.references | Lavi, N., Tadmor, Y., Meir, A., Bechar, A., Oren-Shamir, M., Ovadia, R., … Levin, I. (2009). Characterization of theINTENSE PIGMENTTomato Genotype Emphasizing Targeted Fruit Metabolites and Chloroplast Biogenesis. Journal of Agricultural and Food Chemistry, 57(11), 4818-4826. doi:10.1021/jf900190r | es_ES |
dc.description.references | Galiana-Balaguer, L., Roselló, S., Herrero-Martı́nez, J. M., Maquieira, A., & Nuez, F. (2001). Determination of -Ascorbic Acid in Lycopersicon Fruits by Capillary Zone Electrophoresis. Analytical Biochemistry, 296(2), 218-224. doi:10.1006/abio.2001.5297 | es_ES |
dc.description.references | Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944 | es_ES |
dc.description.references | Rao, C. R. (1971). Estimation of variance and covariance components—MINQUE theory. Journal of Multivariate Analysis, 1(3), 257-275. doi:10.1016/0047-259x(71)90001-7 | es_ES |
dc.description.references | Benjamini, Y., & Hochberg, Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1), 60-83. doi:10.3102/10769986025001060 | es_ES |
dc.description.references | Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827 | es_ES |
dc.description.references | Gould, W. A. (1992). Tomato Production, Processing and Technology. doi:10.1533/9781845696146 | es_ES |
dc.description.references | Shigeoka, S. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305-1319. doi:10.1093/jexbot/53.372.1305 | es_ES |
dc.description.references | Adalid, A. M., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2008). EVALUATION AND SELECTION OF LYCOPERSICON ACCESSIONS FOR HIGH CAROTENOID AND VITAMIN C CONTENT. Acta Horticulturae, (789), 221-228. doi:10.17660/actahortic.2008.789.30 | es_ES |
dc.description.references | Leoni, C. (1992). INDUSTRIAL QUALITY AS INFLUENCED BY CROP MANAGEMENT. Acta Horticulturae, (301), 177-184. doi:10.17660/actahortic.1992.301.20 | es_ES |
dc.description.references | Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549 | es_ES |
dc.description.references | McCOLLUM, J. P. (1954). EFFECTS OF LIGHT ON THE FORMATION OF CAROTENOIDS IN TOMATO FRUITS. Journal of Food Science, 19(1-6), 182-189. doi:10.1111/j.1365-2621.1954.tb17437.x | es_ES |
dc.description.references | Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1 | es_ES |
dc.description.references | LIPTAY, A., PAPADOPOULOS, A. P., BRYAN, H. H., & GULL, D. (1986). Ascorbic acid levels in tomato (Lycopersicon esculentum Mill.) at low temperatures. Agricultural and Biological Chemistry, 50(12), 3185-3187. doi:10.1271/bbb1961.50.3185 | es_ES |
dc.description.references | Adegoroye, A. S., & Jolliffe, P. A. (1987). Some inhibitory effects of radiation stress on tomato fruit ripening. Journal of the Science of Food and Agriculture, 39(4), 297-302. doi:10.1002/jsfa.2740390404 | es_ES |
dc.description.references | Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4(3), 210-218. doi:10.1016/s1369-5266(00)00163-1 | es_ES |
dc.description.references | Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035 | es_ES |