- -

Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rosello Ripolles, Salvador es_ES
dc.contributor.author Adalid Martínez, Ana Maria es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.date.accessioned 2017-05-17T09:40:29Z
dc.date.available 2017-05-17T09:40:29Z
dc.date.issued 2011-04
dc.identifier.issn 0022-5142
dc.identifier.uri http://hdl.handle.net/10251/81267
dc.description.abstract [EN] BACKGROUND: Tomatoes are an important source of antioxidants (carotenoids, vitamin C, etc.) owing to their high level of consumption. There is great interest in developing cultivars with increased levels of lycopene, beta-carotene or L-ascorbic acid. There is necessary to survey new sources of variation. In this study, the potential of improvement for each character in tomato breeding programmes, in a single or joint approach, and the nature of genotype (G), environment (E) and G x E interaction effects in the expression of these characters were investigated. RESULTS: The content of lycopene, beta-carotene and ascorbic acid determined was very high in some phenotypes (up to 281, 35 and 346 mg kg(-1) respectively). The important differences in the three environments studied (with some stressing conditions in several situations) had a remarkable influence in the phenotypic expression of the functional characters evaluated. Nevertheless, the major contribution came from the genotypic effect along with a considerable G x E interaction. CONCLUSION: The joint accumulation of lycopene and beta-carotene has a high genetic component. It is possible to select elite genotypes with high content of both carotenoids in tomato breeding programmes but multi-environment trials are recommended. The improvement of ascorbic acid content is more difficult because the interference of uncontrolled factors mask the real genetic potential. Among the accessions evaluated, there are four accessions with an amazing genetic potential for functional properties that can be used as donor parents in tomato breeding programmes or for direct consumption in quality markets. (C) 2011 Society of Chemical Industry es_ES
dc.description.sponsorship This research was financed by the Spanish Ministry of Science and Innovation (MICINN) (project AGL2005-08083-C03-01). The authors thank Professor Jun Zhu, director of the Bioinformatics Institute, Zhejiang University, China, for his comments and for the software used in the data analyses. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of the Science of Food and Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SS-carotene es_ES
dc.subject Functional quality es_ES
dc.subject Genetic resources es_ES
dc.subject Linear mixed models es_ES
dc.subject Lycopene es_ES
dc.subject Solanum section Lycopersicon es_ES
dc.subject Vitamin C es_ES
dc.subject Ascorbic acid es_ES
dc.subject Beta carotene es_ES
dc.subject Carotenoid es_ES
dc.subject Algorithm es_ES
dc.subject Article es_ES
dc.subject Chimera es_ES
dc.subject Comparative study es_ES
dc.subject Crop es_ES
dc.subject Environmental aspects and related phenomena es_ES
dc.subject Fruit es_ES
dc.subject Genetics es_ES
dc.subject Genotype es_ES
dc.subject Growth, development and aging es_ES
dc.subject Hybridization es_ES
dc.subject Metabolism es_ES
dc.subject Physiological stress es_ES
dc.subject Plant gene es_ES
dc.subject Season es_ES
dc.subject Solanum es_ES
dc.subject Spain es_ES
dc.subject Sunlight es_ES
dc.subject Tomato es_ES
dc.subject Algorithms es_ES
dc.subject Carotenoids es_ES
dc.subject Crops, Agricultural es_ES
dc.subject Ecological and Environmental Processes es_ES
dc.subject Genes, Plant es_ES
dc.subject Hybridization, Genetic es_ES
dc.subject Lycopersicon esculentum es_ES
dc.subject Seasons es_ES
dc.subject Stress, Physiological es_ES
dc.subject Lycopersicon es_ES
dc.subject.classification GENETICA es_ES
dc.title Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jsfa.4276
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2005-08083-C03-01/ES/MEJORA DE LA CALIDAD ORGANOLEPTICA Y NUTRITIVA DEL TOMATE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Rosello Ripolles, S.; Adalid Martínez, AM.; Cebolla Cornejo, J.; Nuez Viñals, F. (2011). Evaluation of the genotype, environment and its interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture. 91(6):1014-1021. https://doi.org/10.1002/jsfa.4276 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/jsfa.4276 es_ES
dc.description.upvformatpinicio 1014 es_ES
dc.description.upvformatpfin 1021 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 206196 es_ES
dc.identifier.eissn 1097-0010
dc.identifier.pmid 21328350
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Bouma, J., Varallyay, G., & Batjes, N. . (1998). Principal land use changes anticipated in Europe. Agriculture, Ecosystems & Environment, 67(2-3), 103-119. doi:10.1016/s0167-8809(97)00109-6 es_ES
dc.description.references Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2-3), 181-188. doi:10.1016/s0260-8774(02)00247-9 es_ES
dc.description.references Beecher, G. R. (1998). Nutrient Content of Tomatoes and Tomato Products. Experimental Biology and Medicine, 218(2), 98-100. doi:10.3181/00379727-218-44282a es_ES
dc.description.references Mayne, S. T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. The FASEB Journal, 10(7), 690-701. doi:10.1096/fasebj.10.7.8635686 es_ES
dc.description.references Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Piro, G., & Dalessandro, G. (2007). CAROTENOIDS CONTENT IN RIPE RAW AND PROCESSED (SAUCE) BERRIES OF HIGH PIGMENT TOMATO HYBRIDS. Acta Horticulturae, (758), 173-180. doi:10.17660/actahortic.2007.758.19 es_ES
dc.description.references Stevens, M. A., & Rick, C. M. (1986). Genetics and breeding. The Tomato Crop, 35-109. doi:10.1007/978-94-009-3137-4_2 es_ES
dc.description.references Hanson, P. M., Yang, R., Wu, J., Chen, J., Ledesma, D., Tsou, S. C. S., & Lee, T.-C. (2004). Variation for Antioxidant Activity and Antioxidants in Tomato. Journal of the American Society for Horticultural Science, 129(5), 704-711. doi:10.21273/jashs.129.5.0704 es_ES
dc.description.references Abushita, A. A., Daood, H. G., & Biacs, P. A. (2000). Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Journal of Agricultural and Food Chemistry, 48(6), 2075-2081. doi:10.1021/jf990715p es_ES
dc.description.references Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001 es_ES
dc.description.references Hamner, K. C., Bernstein, L., & Maynard, L. A. (1945). Effects of Light Intensity, Day Length, Temperature, and Other Environmental Factors on the Ascorbic Acid Content of Tomatoes. The Journal of Nutrition, 29(2), 85-97. doi:10.1093/jn/29.2.85 es_ES
dc.description.references Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 es_ES
dc.description.references Lavi, N., Tadmor, Y., Meir, A., Bechar, A., Oren-Shamir, M., Ovadia, R., … Levin, I. (2009). Characterization of theINTENSE PIGMENTTomato Genotype Emphasizing Targeted Fruit Metabolites and Chloroplast Biogenesis. Journal of Agricultural and Food Chemistry, 57(11), 4818-4826. doi:10.1021/jf900190r es_ES
dc.description.references Galiana-Balaguer, L., Roselló, S., Herrero-Martı́nez, J. M., Maquieira, A., & Nuez, F. (2001). Determination of -Ascorbic Acid in Lycopersicon Fruits by Capillary Zone Electrophoresis. Analytical Biochemistry, 296(2), 218-224. doi:10.1006/abio.2001.5297 es_ES
dc.description.references Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944 es_ES
dc.description.references Rao, C. R. (1971). Estimation of variance and covariance components—MINQUE theory. Journal of Multivariate Analysis, 1(3), 257-275. doi:10.1016/0047-259x(71)90001-7 es_ES
dc.description.references Benjamini, Y., & Hochberg, Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1), 60-83. doi:10.3102/10769986025001060 es_ES
dc.description.references Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827 es_ES
dc.description.references Gould, W. A. (1992). Tomato Production, Processing and Technology. doi:10.1533/9781845696146 es_ES
dc.description.references Shigeoka, S. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305-1319. doi:10.1093/jexbot/53.372.1305 es_ES
dc.description.references Adalid, A. M., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2008). EVALUATION AND SELECTION OF LYCOPERSICON ACCESSIONS FOR HIGH CAROTENOID AND VITAMIN C CONTENT. Acta Horticulturae, (789), 221-228. doi:10.17660/actahortic.2008.789.30 es_ES
dc.description.references Leoni, C. (1992). INDUSTRIAL QUALITY AS INFLUENCED BY CROP MANAGEMENT. Acta Horticulturae, (301), 177-184. doi:10.17660/actahortic.1992.301.20 es_ES
dc.description.references Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549 es_ES
dc.description.references McCOLLUM, J. P. (1954). EFFECTS OF LIGHT ON THE FORMATION OF CAROTENOIDS IN TOMATO FRUITS. Journal of Food Science, 19(1-6), 182-189. doi:10.1111/j.1365-2621.1954.tb17437.x es_ES
dc.description.references Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1 es_ES
dc.description.references LIPTAY, A., PAPADOPOULOS, A. P., BRYAN, H. H., & GULL, D. (1986). Ascorbic acid levels in tomato (Lycopersicon esculentum Mill.) at low temperatures. Agricultural and Biological Chemistry, 50(12), 3185-3187. doi:10.1271/bbb1961.50.3185 es_ES
dc.description.references Adegoroye, A. S., & Jolliffe, P. A. (1987). Some inhibitory effects of radiation stress on tomato fruit ripening. Journal of the Science of Food and Agriculture, 39(4), 297-302. doi:10.1002/jsfa.2740390404 es_ES
dc.description.references Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4(3), 210-218. doi:10.1016/s1369-5266(00)00163-1 es_ES
dc.description.references Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem