- -

Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution

Mostrar el registro completo del ítem

Deplaine, H.; Acosta-Santamaría, VA.; Vidaurre Garayo, AJ.; Gómez Ribelles, JL.; Doblare Castellano, M.; Ochoa-Garrido, I.; Gallego Ferrer, G. (2014). Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution. Journal of Applied Polymer Science. 131:40956-40966. https://doi.org/10.1002/APP.40956

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81280

Ficheros en el ítem

Metadatos del ítem

Título: Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution
Autor: Deplaine, Harmony Acosta-Santamaría, Victor A. Vidaurre Garayo, Ana Jesús Gómez Ribelles, José Luís Doblare Castellano, Manuel Ochoa-Garrido, Ignacio Gallego Ferrer, Gloria
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] A poly(L-lactic acid) scaffold prepared by a combination of freeze-extraction and porogen-leaching methods was submitted to static degradation in a phosphate-buffered saline solution at pH 7.4 and 37 C for up to 12 ...[+]
Palabras clave: Biomedical applications , Degradation , Mechanical properties
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Polymer Science. (issn: 0021-8995 ) (eissn: 1097-4628 )
DOI: 10.1002/APP.40956
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/app.40956
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/324386/EU/Network for Development of Soft Nanofibrous Construct for Cellular Therapy of Degenerative Skeletal Disorders/
info:eu-repo/grantAgreement/ARC/Discovery Projects/DP110103032/AU/Nanoscale characterisation of the dynamics of artificial lipid membranes - model systems for drug binding studies/
Agradecimientos:
The authors acknowledge the support of the Instituto de Salud Carlos III, Ministerio de Economıa y Competitividad, and the European Commission through FP7-ERANet EuroNanoMed 2011 PI11/03032 and FP7-PEOPLE-2012-IAPP (contract ...[+]
Tipo: Artículo

References

Zhao, J., Yuan, X., Cui, Y., Ge, Q., & Yao, K. (2003). Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 91(3), 1676-1684. doi:10.1002/app.13323

Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489

Butler, D. L., Goldstein, S. A., & Guilak, F. (2000). Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 122(6), 570-575. doi:10.1115/1.1318906 [+]
Zhao, J., Yuan, X., Cui, Y., Ge, Q., & Yao, K. (2003). Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 91(3), 1676-1684. doi:10.1002/app.13323

Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489

Butler, D. L., Goldstein, S. A., & Guilak, F. (2000). Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 122(6), 570-575. doi:10.1115/1.1318906

Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8

Woodruff, M. A., Lange, C., Reichert, J., Berner, A., Chen, F., Fratzl, P., … Hutmacher, D. W. (2012). Bone tissue engineering: from bench to bedside. Materials Today, 15(10), 430-435. doi:10.1016/s1369-7021(12)70194-3

Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6

Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0

Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683

Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124

Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., A. Tamada, J., … Mikos, A. G. (2000). In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials, 21(15), 1595-1605. doi:10.1016/s0142-9612(00)00048-x

Lu, L., Peter, S. J., D. Lyman, M., Lai, H.-L., Leite, S. M., Tamada, J. A., … Mikos, A. G. (2000). In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials, 21(18), 1837-1845. doi:10.1016/s0142-9612(00)00047-8

Odelius, K., Höglund, A., Kumar, S., Hakkarainen, M., Ghosh, A. K., Bhatnagar, N., & Albertsson, A.-C. (2011). Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 12(4), 1250-1258. doi:10.1021/bm1015464

GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008

Zhao, J., Han, W., Tu, M., Huan, S., Zeng, R., Wu, H., … Zhou, C. (2012). Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Materials Science and Engineering: C, 32(6), 1496-1502. doi:10.1016/j.msec.2012.04.031

Hakkarainen, M., Albertsson, A.-C., & Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 52(3), 283-291. doi:10.1016/0141-3910(96)00009-2

Zhang, X., Espiritu, M., Bilyk, A., & Kurniawan, L. (2008). Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 93(10), 1964-1970. doi:10.1016/j.polymdegradstab.2008.06.007

Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0

Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 245-274. doi:10.1007/3540587888_18

Li, W.-J., & Tuan, R. S. (2005). Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 227(1), 65-76. doi:10.1002/masy.200550906

Ma, J., He, X., & Jabbari, E. (2010). Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers. Annals of Biomedical Engineering, 39(1), 14-25. doi:10.1007/s10439-010-0106-3

Dai, L., Li, D., & He, J. (2013). Degradation of graft polymer and blend based on cellulose and poly(L-lactide). Journal of Applied Polymer Science, 130(4), 2257-2264. doi:10.1002/app.39451

Vieira, A. C., Vieira, J. C., Ferra, J. M., Magalhães, F. D., Guedes, R. M., & Marques, A. T. (2011). Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 451-460. doi:10.1016/j.jmbbm.2010.12.006

Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031

Tsuji, H., Mizuno, A., & Ikada, Y. (2000). Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 77(7), 1452-1464. doi:10.1002/1097-4628(20000815)77:7<1452::aid-app7>3.0.co;2-s

Tsuji, H., & Ikada, Y. (2000). Properties and morphology of poly( l -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly( l -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 67(1), 179-189. doi:10.1016/s0141-3910(99)00111-1

Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46(3-4), 273-282. doi:10.1016/s0079-6425(00)00018-9

Li, S., de Wijn, J. R., Li, J., Layrolle, P., & de Groot, K. (2003). Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 9(3), 535-548. doi:10.1089/107632703322066714

Wagoner Johnson, A. J., & Herschler, B. A. (2011). A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, 7(1), 16-30. doi:10.1016/j.actbio.2010.07.012

Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039

Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001

Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6

Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831

Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6

Alberich-Bayarri, A., Moratal, D., Ivirico, J. L. E., Hernández, J. C. R., Vallés-Lluch, A., Martí-Bonmatí, L., … Salmerón-Sánchez, M. (2009). Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 191-202. doi:10.1002/jbm.b.31389

Mollica, F., Ventre, M., Sarracino, F., Ambrosio, L., & Nicolais, L. (2007). Implicit constitutive equations in the modeling of bimodular materials: An application to biomaterials. Computers & Mathematics with Applications, 53(2), 209-218. doi:10.1016/j.camwa.2006.02.020

TURNER, C. H. (2006). Bone Strength: Current Concepts. Annals of the New York Academy of Sciences, 1068(1), 429-446. doi:10.1196/annals.1346.039

HARLEY, B., LEUNG, J., SILVA, E., & GIBSON, L. (2007). Mechanical characterization of collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 3(4), 463-474. doi:10.1016/j.actbio.2006.12.009

DiSilvestro, M. R., & Suh, J.-K. F. (2001). A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics, 34(4), 519-525. doi:10.1016/s0021-9290(00)00224-4

Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (1997). Optical and mechanical determination of poisson’s ratio of adult bovine humeral articular cartilage. Journal of Biomechanics, 30(3), 235-241. doi:10.1016/s0021-9290(96)00133-9

Korhonen, R. ., Laasanen, M. ., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H. ., & Jurvelin, J. . (2002). Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Journal of Biomechanics, 35(7), 903-909. doi:10.1016/s0021-9290(02)00052-0

Acosta Santamaría, V. A., García Aznar, J. M., Ochoa, I., & Doblare, M. (2012). Effect of Sample Pre-Contact on the Experimental Evaluation of Cartilage Mechanical Properties. Experimental Mechanics, 53(6), 911-917. doi:10.1007/s11340-012-9698-x

Ochoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., Doblaré, M., Yunos, D. M., & Boccaccini, A. R. (2009). Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Biomechanics, 42(3), 257-260. doi:10.1016/j.jbiomech.2008.10.030

Chor, M. V., & Li, W. (2006). A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 18(1), 208-216. doi:10.1088/0957-0233/18/1/026

Al-Munajjed, A. A., Hien, M., Kujat, R., Gleeson, J. P., & Hammer, J. (2008). Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. Journal of Materials Science: Materials in Medicine, 19(8), 2859-2864. doi:10.1007/s10856-008-3422-5

Sanz-Herrera, J. A., Kasper, C., van Griensven, M., Garcia-Aznar, J. M., Ochoa, I., & Doblare, M. (2008). Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(1), 42-48. doi:10.1002/jbm.b.31065

Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomaterialia, 8(4), 1648-1658. doi:10.1016/j.actbio.2011.12.021

Castilla-Cortázar, I., Más-Estellés, J., Meseguer-Dueñas, J. M., Escobar Ivirico, J. L., Marí, B., & Vidaurre, A. (2012). Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, 97(8), 1241-1248. doi:10.1016/j.polymdegradstab.2012.05.038

Tsuji, H., & Ikada, Y. (1996). Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 37(4), 595-602. doi:10.1016/0032-3861(96)83146-6

Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033

Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t

Höglund, A., Odelius, K., Hakkarainen, M., & Albertsson, A.-C. (2007). Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 8(6), 2025-2032. doi:10.1021/bm070292x

Persenaire, O., Alexandre, M., Degée, P., & Dubois, P. (2001). Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2(1), 288-294. doi:10.1021/bm0056310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem