Mostrar el registro sencillo del ítem
dc.contributor.author | Deplaine, Harmony | es_ES |
dc.contributor.author | Acosta-Santamaría, Victor A. | es_ES |
dc.contributor.author | Vidaurre Garayo, Ana Jesús | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Doblare Castellano, Manuel | es_ES |
dc.contributor.author | Ochoa-Garrido, Ignacio | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.date.accessioned | 2017-05-17T11:40:59Z | |
dc.date.available | 2017-05-17T11:40:59Z | |
dc.date.issued | 2014-10-15 | |
dc.identifier.issn | 0021-8995 | |
dc.identifier.uri | http://hdl.handle.net/10251/81280 | |
dc.description.abstract | [EN] A poly(L-lactic acid) scaffold prepared by a combination of freeze-extraction and porogen-leaching methods was submitted to static degradation in a phosphate-buffered saline solution at pH 7.4 and 37 C for up to 12 months. After 6 months of degradation, the scaffold maintained its integrity, although noticeable changes in its permeability and pore size were recorded. After 12 months, scanning electron microscopy pictures showed that most of the trabeculae were broken, and the sample disaggregated under minimum loading. Neither weight loss nor crystallinity changes in the first heating calorimetric scan were observed during the degradation experiment. However, after 12 months, a rise in the crystallinity from 13 to 38% and a drop in the glass-transition temperature from 58 to 54 C were measured in the second heating scan. The onset of thermal degradation moved from 300 to 210 C after 12 months. Although the elastic modulus suffered only a very slight reduction with degradation time, the aggregate modulus decreased 44% after 6 months. | es_ES |
dc.description.sponsorship | The authors acknowledge the support of the Instituto de Salud Carlos III, Ministerio de Economıa y Competitividad, and the European Commission through FP7-ERANet EuroNanoMed 2011 PI11/03032 and FP7-PEOPLE-2012-IAPP (contract grant number PIAP-GA-2012–324386). The Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, and Consolider Program. Biomedical Research Networking Center actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors also thank the Tissue Characterization Platform of the Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine for its technical support. They also thank the Linguistic Assistance Services of the Language Centre, Universitat Politecnica de Valencia, for their help in revising this article. | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomedical applications | es_ES |
dc.subject | Degradation | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/APP.40956 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/324386/EU/Network for Development of Soft Nanofibrous Construct for Cellular Therapy of Degenerative Skeletal Disorders/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Discovery Projects/DP110103032/AU/Nanoscale characterisation of the dynamics of artificial lipid membranes - model systems for drug binding studies/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Deplaine, H.; Acosta-Santamaría, VA.; Vidaurre Garayo, AJ.; Gómez Ribelles, JL.; Doblare Castellano, M.; Ochoa-Garrido, I.; Gallego-Ferrer, G. (2014). Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution. Journal of Applied Polymer Science. 131:40956-40966. https://doi.org/10.1002/APP.40956 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/app.40956 | es_ES |
dc.description.upvformatpinicio | 40956 | es_ES |
dc.description.upvformatpfin | 40966 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.relation.senia | 278733 | es_ES |
dc.identifier.eissn | 1097-4628 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Instituto de Salud Carlos III | |
dc.description.references | Zhao, J., Yuan, X., Cui, Y., Ge, Q., & Yao, K. (2003). Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 91(3), 1676-1684. doi:10.1002/app.13323 | es_ES |
dc.description.references | Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489 | es_ES |
dc.description.references | Butler, D. L., Goldstein, S. A., & Guilak, F. (2000). Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 122(6), 570-575. doi:10.1115/1.1318906 | es_ES |
dc.description.references | Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8 | es_ES |
dc.description.references | Woodruff, M. A., Lange, C., Reichert, J., Berner, A., Chen, F., Fratzl, P., … Hutmacher, D. W. (2012). Bone tissue engineering: from bench to bedside. Materials Today, 15(10), 430-435. doi:10.1016/s1369-7021(12)70194-3 | es_ES |
dc.description.references | Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421 | es_ES |
dc.description.references | Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 | es_ES |
dc.description.references | Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0 | es_ES |
dc.description.references | Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683 | es_ES |
dc.description.references | Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124 | es_ES |
dc.description.references | Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., A. Tamada, J., … Mikos, A. G. (2000). In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials, 21(15), 1595-1605. doi:10.1016/s0142-9612(00)00048-x | es_ES |
dc.description.references | Lu, L., Peter, S. J., D. Lyman, M., Lai, H.-L., Leite, S. M., Tamada, J. A., … Mikos, A. G. (2000). In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials, 21(18), 1837-1845. doi:10.1016/s0142-9612(00)00047-8 | es_ES |
dc.description.references | Odelius, K., Höglund, A., Kumar, S., Hakkarainen, M., Ghosh, A. K., Bhatnagar, N., & Albertsson, A.-C. (2011). Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 12(4), 1250-1258. doi:10.1021/bm1015464 | es_ES |
dc.description.references | GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008 | es_ES |
dc.description.references | Zhao, J., Han, W., Tu, M., Huan, S., Zeng, R., Wu, H., … Zhou, C. (2012). Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Materials Science and Engineering: C, 32(6), 1496-1502. doi:10.1016/j.msec.2012.04.031 | es_ES |
dc.description.references | Hakkarainen, M., Albertsson, A.-C., & Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 52(3), 283-291. doi:10.1016/0141-3910(96)00009-2 | es_ES |
dc.description.references | Zhang, X., Espiritu, M., Bilyk, A., & Kurniawan, L. (2008). Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 93(10), 1964-1970. doi:10.1016/j.polymdegradstab.2008.06.007 | es_ES |
dc.description.references | Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0 | es_ES |
dc.description.references | Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 245-274. doi:10.1007/3540587888_18 | es_ES |
dc.description.references | Li, W.-J., & Tuan, R. S. (2005). Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 227(1), 65-76. doi:10.1002/masy.200550906 | es_ES |
dc.description.references | Ma, J., He, X., & Jabbari, E. (2010). Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers. Annals of Biomedical Engineering, 39(1), 14-25. doi:10.1007/s10439-010-0106-3 | es_ES |
dc.description.references | Dai, L., Li, D., & He, J. (2013). Degradation of graft polymer and blend based on cellulose and poly(L-lactide). Journal of Applied Polymer Science, 130(4), 2257-2264. doi:10.1002/app.39451 | es_ES |
dc.description.references | Vieira, A. C., Vieira, J. C., Ferra, J. M., Magalhães, F. D., Guedes, R. M., & Marques, A. T. (2011). Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 451-460. doi:10.1016/j.jmbbm.2010.12.006 | es_ES |
dc.description.references | Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031 | es_ES |
dc.description.references | Tsuji, H., Mizuno, A., & Ikada, Y. (2000). Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 77(7), 1452-1464. doi:10.1002/1097-4628(20000815)77:7<1452::aid-app7>3.0.co;2-s | es_ES |
dc.description.references | Tsuji, H., & Ikada, Y. (2000). Properties and morphology of poly( l -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly( l -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 67(1), 179-189. doi:10.1016/s0141-3910(99)00111-1 | es_ES |
dc.description.references | Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46(3-4), 273-282. doi:10.1016/s0079-6425(00)00018-9 | es_ES |
dc.description.references | Li, S., de Wijn, J. R., Li, J., Layrolle, P., & de Groot, K. (2003). Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 9(3), 535-548. doi:10.1089/107632703322066714 | es_ES |
dc.description.references | Wagoner Johnson, A. J., & Herschler, B. A. (2011). A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, 7(1), 16-30. doi:10.1016/j.actbio.2010.07.012 | es_ES |
dc.description.references | Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039 | es_ES |
dc.description.references | Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001 | es_ES |
dc.description.references | Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6 | es_ES |
dc.description.references | Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831 | es_ES |
dc.description.references | Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 | es_ES |
dc.description.references | Alberich-Bayarri, A., Moratal, D., Ivirico, J. L. E., Hernández, J. C. R., Vallés-Lluch, A., Martí-Bonmatí, L., … Salmerón-Sánchez, M. (2009). Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 191-202. doi:10.1002/jbm.b.31389 | es_ES |
dc.description.references | Mollica, F., Ventre, M., Sarracino, F., Ambrosio, L., & Nicolais, L. (2007). Implicit constitutive equations in the modeling of bimodular materials: An application to biomaterials. Computers & Mathematics with Applications, 53(2), 209-218. doi:10.1016/j.camwa.2006.02.020 | es_ES |
dc.description.references | TURNER, C. H. (2006). Bone Strength: Current Concepts. Annals of the New York Academy of Sciences, 1068(1), 429-446. doi:10.1196/annals.1346.039 | es_ES |
dc.description.references | HARLEY, B., LEUNG, J., SILVA, E., & GIBSON, L. (2007). Mechanical characterization of collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 3(4), 463-474. doi:10.1016/j.actbio.2006.12.009 | es_ES |
dc.description.references | DiSilvestro, M. R., & Suh, J.-K. F. (2001). A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics, 34(4), 519-525. doi:10.1016/s0021-9290(00)00224-4 | es_ES |
dc.description.references | Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (1997). Optical and mechanical determination of poisson’s ratio of adult bovine humeral articular cartilage. Journal of Biomechanics, 30(3), 235-241. doi:10.1016/s0021-9290(96)00133-9 | es_ES |
dc.description.references | Korhonen, R. ., Laasanen, M. ., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H. ., & Jurvelin, J. . (2002). Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Journal of Biomechanics, 35(7), 903-909. doi:10.1016/s0021-9290(02)00052-0 | es_ES |
dc.description.references | Acosta Santamaría, V. A., García Aznar, J. M., Ochoa, I., & Doblare, M. (2012). Effect of Sample Pre-Contact on the Experimental Evaluation of Cartilage Mechanical Properties. Experimental Mechanics, 53(6), 911-917. doi:10.1007/s11340-012-9698-x | es_ES |
dc.description.references | Ochoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., Doblaré, M., Yunos, D. M., & Boccaccini, A. R. (2009). Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Biomechanics, 42(3), 257-260. doi:10.1016/j.jbiomech.2008.10.030 | es_ES |
dc.description.references | Chor, M. V., & Li, W. (2006). A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 18(1), 208-216. doi:10.1088/0957-0233/18/1/026 | es_ES |
dc.description.references | Al-Munajjed, A. A., Hien, M., Kujat, R., Gleeson, J. P., & Hammer, J. (2008). Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. Journal of Materials Science: Materials in Medicine, 19(8), 2859-2864. doi:10.1007/s10856-008-3422-5 | es_ES |
dc.description.references | Sanz-Herrera, J. A., Kasper, C., van Griensven, M., Garcia-Aznar, J. M., Ochoa, I., & Doblare, M. (2008). Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(1), 42-48. doi:10.1002/jbm.b.31065 | es_ES |
dc.description.references | Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomaterialia, 8(4), 1648-1658. doi:10.1016/j.actbio.2011.12.021 | es_ES |
dc.description.references | Castilla-Cortázar, I., Más-Estellés, J., Meseguer-Dueñas, J. M., Escobar Ivirico, J. L., Marí, B., & Vidaurre, A. (2012). Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, 97(8), 1241-1248. doi:10.1016/j.polymdegradstab.2012.05.038 | es_ES |
dc.description.references | Tsuji, H., & Ikada, Y. (1996). Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 37(4), 595-602. doi:10.1016/0032-3861(96)83146-6 | es_ES |
dc.description.references | Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033 | es_ES |
dc.description.references | Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t | es_ES |
dc.description.references | Höglund, A., Odelius, K., Hakkarainen, M., & Albertsson, A.-C. (2007). Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 8(6), 2025-2032. doi:10.1021/bm070292x | es_ES |
dc.description.references | Persenaire, O., Alexandre, M., Degée, P., & Dubois, P. (2001). Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2(1), 288-294. doi:10.1021/bm0056310 | es_ES |