- -

Mechanism of carrier accumulation in perovskite thin-absorber solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanism of carrier accumulation in perovskite thin-absorber solar cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kim, Hui-Seon es_ES
dc.contributor.author Mora-Sero, Iván es_ES
dc.contributor.author González-Pedro, Victoria es_ES
dc.contributor.author Fabregat-Santiago, Francisco es_ES
dc.contributor.author Juarez-Perez, Emilio J. es_ES
dc.contributor.author Park, Nam-Gyu es_ES
dc.contributor.author Bisquert, Juan es_ES
dc.date.accessioned 2017-05-18T07:44:40Z
dc.date.available 2017-05-18T07:44:40Z
dc.date.issued 2013-07
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/81355
dc.description.abstract [EN] Photovoltaic conversion requires two successive steps: accumulation of a photogenerated charge and charge separation. Determination of how and where charge accumulation is attained and how this accumulation can be identified is mandatory for understanding the performance of a photovoltaic device and for its further optimization. Here we analyse the mechanism of carrier accumulation in lead halide perovskite, CH3NH3PbI3, thin-absorber solar cells by means of impedance spectroscopy. A fingerprint of the charge accumulation in high density of states of the perovskite absorber material has been observed at the capacitance of the samples. This is, as far as we know, the first observation of charge accumulation in light-absorbing material for nanostructured solar cells, indicating that it constitutes a new kind of photovoltaic device, differentiated from sensitized solar cells, which will require its own methods of study, characterization and optimization. es_ES
dc.description.sponsorship We thank the following agencies for supporting this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008) and Universitat Jaume I project 12I361.01/1. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea under contracts No. NRF-2012M1A2A2671721, NRF-2010-0014992 and NRF-2012M3A6A7054861 (the Global Frontier R&D Program on Center for Multiscale Energy System). H.-S.K. is grateful for the global Ph.D. fellowship grant funded by NRF (NRF-2011-0008467). We thank Mr. Dae-Yong Son for preparation of the ZrO<INF>2</INF> paste. We thank Prof. A. Maquieira and Dr. M.J. Banuls from the Institute of Molecular Recognition and Technological Development (Polytechnic University of Valencia) for SEM measurements of CH<INF>3</INF>NH<INF>3</INF>PbI<INF>3-x</INF>Cl<INF>x</INF> samples.
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organometal halide perovskites es_ES
dc.subject Dye es_ES
dc.subject Recombination es_ES
dc.subject Efficiency es_ES
dc.subject Electrodes es_ES
dc.subject Impedance es_ES
dc.subject Transport es_ES
dc.subject TIO2 es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Mechanism of carrier accumulation in perovskite thin-absorber solar cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms3242
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//12I361.01%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2012M1A2A2671721/
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2010-0014992/
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2012M3A6A7054861/
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2011-0008467/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kim, H.; Mora-Sero, I.; González-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, EJ.; Park, N.; Bisquert, J. (2013). Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications. 4:1-7. https://doi.org/10.1038/ncomms3242 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms3242 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 288001 es_ES
dc.identifier.pmid 23900067
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Jaume I
dc.contributor.funder National Research Foundation of Korea
dc.description.references Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–200 (2002). es_ES
dc.description.references O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). es_ES
dc.description.references Hodes, G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008). es_ES
dc.description.references Mora-Seró, I. & Bisquert, J. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010). es_ES
dc.description.references Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). es_ES
dc.description.references Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). es_ES
dc.description.references Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano. Lett. 13, 1764–1769 (2013). es_ES
dc.description.references Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013). es_ES
dc.description.references Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Chem. Phys. Lett. 4, 897–902 (2013). es_ES
dc.description.references Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011). es_ES
dc.description.references Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). es_ES
dc.description.references Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). es_ES
dc.description.references Hod, I. et al. Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J. Phys. Chem. Lett. 2, 3032–3035 (2011). es_ES
dc.description.references Boix, P. P. et al. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6, 873–880 (2012). es_ES
dc.description.references Unger, E. L. et al. Bilayer hybrid solar cells based on triphenylamine-thienylenevinylene dye and TiO2 . J. Phys. Chem. C 114, 11659–11664 (2010). es_ES
dc.description.references Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T. & Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475–482 (2003). es_ES
dc.description.references Topoglidis, E., Campbell, C. J., Palomares, E. & Durrant, J. R. Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. Chem. Comm. 14, 1518–1519 (2002). es_ES
dc.description.references Bisquert, J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003). es_ES
dc.description.references Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Seró, I. & Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011). es_ES
dc.description.references Bisquert, J., Grätzel, M., Wang, Q. & Fabregat-Santiago, F. Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J. Chem. Phys. B 110, 11284–11290 (2006). es_ES
dc.description.references Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Chem. Phys. B 106, 325–333 (2002). es_ES
dc.description.references Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with Spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009). es_ES
dc.description.references Dualeh, A., Moehl, T., Nazeeruddin, M. K. & Grätzel, M. Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 7, 2292–2301 (2013). es_ES
dc.description.references Fabregat-Santiago, F., Garcia-Belmonte, G., Bisquert, J., Bogdanoff, P. & Zaban, A. Mott-Schottky analysis of nanoporous semiconductor electrodes in the dielectric state deposited on SnO2(F) conducting substrates. J Electrochem. Soc. 150, E293–E298 (2002). es_ES
dc.description.references Kim, M.-J. et al. Unusual enhancement of photocurrent by incorporation of bronsted base thiourea into electrolyte of dye-sensitized solar cell. J. Chem. Phys. C 114, 19849–19852 (2010). es_ES
dc.description.references Ito, S. et al. Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog. Photovolt: Res. Appl. 14, 589–601 (2006). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem