- -

Mechanism of carrier accumulation in perovskite thin-absorber solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanism of carrier accumulation in perovskite thin-absorber solar cells

Mostrar el registro completo del ítem

Kim, H.; Mora-Sero, I.; González-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, EJ.; Park, N.; Bisquert Mascarell, J. (2013). Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications. 4:1-7. https://doi.org/10.1038/ncomms3242

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81355

Ficheros en el ítem

Metadatos del ítem

Título: Mechanism of carrier accumulation in perovskite thin-absorber solar cells
Autor: Kim, Hui-Seon Mora-Sero, Iván González-Pedro, Victoria Fabregat-Santiago, Francisco Juarez-Perez, Emilio J. Park, Nam-Gyu Bisquert Mascarell, Juan
Fecha difusión:
Resumen:
[EN] Photovoltaic conversion requires two successive steps: accumulation of a photogenerated charge and charge separation. Determination of how and where charge accumulation is attained and how this accumulation can be ...[+]
Palabras clave: Organometal halide perovskites , Dye , Recombination , Efficiency , Electrodes , Impedance , Transport , TIO2
Derechos de uso: Reserva de todos los derechos
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms3242
Editorial:
Nature Publishing Group
Versión del editor: http://doi.org/10.1038/ncomms3242
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/
...[+]
info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/
info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F008/
info:eu-repo/grantAgreement/UJI//12I361.01%2F1/
info:eu-repo/grantAgreement/NRF//2012M1A2A2671721/
info:eu-repo/grantAgreement/NRF//2010-0014992/
info:eu-repo/grantAgreement/NRF//2012M3A6A7054861/
info:eu-repo/grantAgreement/NRF//2011-0008467/
[-]
Agradecimientos:
We thank the following agencies for supporting this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008) and Universitat Jaume I project 12I361.01/1. This ...[+]
Tipo: Artículo

References

Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–200 (2002).

O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

Hodes, G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008). [+]
Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–200 (2002).

O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

Hodes, G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008).

Mora-Seró, I. & Bisquert, J. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010).

Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano. Lett. 13, 1764–1769 (2013).

Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Chem. Phys. Lett. 4, 897–902 (2013).

Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

Hod, I. et al. Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J. Phys. Chem. Lett. 2, 3032–3035 (2011).

Boix, P. P. et al. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6, 873–880 (2012).

Unger, E. L. et al. Bilayer hybrid solar cells based on triphenylamine-thienylenevinylene dye and TiO2 . J. Phys. Chem. C 114, 11659–11664 (2010).

Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T. & Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475–482 (2003).

Topoglidis, E., Campbell, C. J., Palomares, E. & Durrant, J. R. Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. Chem. Comm. 14, 1518–1519 (2002).

Bisquert, J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003).

Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Seró, I. & Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011).

Bisquert, J., Grätzel, M., Wang, Q. & Fabregat-Santiago, F. Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J. Chem. Phys. B 110, 11284–11290 (2006).

Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Chem. Phys. B 106, 325–333 (2002).

Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with Spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009).

Dualeh, A., Moehl, T., Nazeeruddin, M. K. & Grätzel, M. Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 7, 2292–2301 (2013).

Fabregat-Santiago, F., Garcia-Belmonte, G., Bisquert, J., Bogdanoff, P. & Zaban, A. Mott-Schottky analysis of nanoporous semiconductor electrodes in the dielectric state deposited on SnO2(F) conducting substrates. J Electrochem. Soc. 150, E293–E298 (2002).

Kim, M.-J. et al. Unusual enhancement of photocurrent by incorporation of bronsted base thiourea into electrolyte of dye-sensitized solar cell. J. Chem. Phys. C 114, 19849–19852 (2010).

Ito, S. et al. Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog. Photovolt: Res. Appl. 14, 589–601 (2006).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem