- -

Computational design of genomic transcriptional networks with adaptation to varying environments

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Computational design of genomic transcriptional networks with adaptation to varying environments

Show full item record

Carrera Montesinos, J.; Elena Fito, SF.; Jaramillo Rosales, A. (2012). Computational design of genomic transcriptional networks with adaptation to varying environments. Proceedings of the National Academy of Sciences. 109(38):15277-15282. https://doi.org/10.1073/pnas.1200030109

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81362

Files in this item

Item Metadata

Title: Computational design of genomic transcriptional networks with adaptation to varying environments
Author: Carrera Montesinos, Javier Elena Fito, Santiago Fco Jaramillo Rosales, Alfonso
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
Abstract:
[EN] Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer ...[+]
Subjects: Automated design , Synthetic genomics , Genome refactoring , Evolutionary computation
Copyrigths: Reserva de todos los derechos
Source:
Proceedings of the National Academy of Sciences. (issn: 0027-8424 )
DOI: 10.1073/pnas.1200030109
Publisher:
National Academy of Sciences
Publisher version: http://doi.org/10.1073/pnas.1200030109
Project ID:
info:eu-repo/grantAgreement/MEC//TIN2006-12860/
info:eu-repo/grantAgreement/EC/FP7/043338/EU/
Thanks:
This work was supported by FP7-ICT-043338 (Bacterial Computing with Engineered Populations), ATIGE-Genopole, TIN2006-12860 (Ministry of Science and Innovation [MICINN]), and the Fondation pour la Recherche Medicale grants ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record