- -

Computational design of genomic transcriptional networks with adaptation to varying environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational design of genomic transcriptional networks with adaptation to varying environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrera Montesinos, Javier es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Jaramillo Rosales, Alfonso es_ES
dc.date.accessioned 2017-05-18T08:55:57Z
dc.date.available 2017-05-18T08:55:57Z
dc.date.issued 2012-09-18
dc.identifier.issn 0027-8424
dc.identifier.uri http://hdl.handle.net/10251/81362
dc.description.abstract [EN] Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer global transcriptional regulatory models. Here, using the large amount of transcriptomic information available for the bacterium Escherichia coli, we seek to understand the design principles determining the regulation of its transcriptome. Combining transcriptomic and signaling data, we develop an evolutionary computational procedure that allows obtaining alternative genomic transcriptional regulatory network (GTRN) that still maintains its adaptability to dynamic environments. We apply our methodology to an E. coli GTRN and show that it could be rewired to simpler transcriptional regulatory structures. These rewired GTRNs still maintain the global physiological response to fluctuating environments. Rewired GTRNs contain 73% fewer regulated operons. Genes with similar functions and coordinated patterns of expression across environments are clustered into longer regulated operons. These synthetic GTRNs are more sensitive and show a more robust response to challenging environments. This result illustrates that the natural configuration of E. coli GTRN does not necessarily result from selection for robustness to environmental perturbations, but that evolutionary contingencies may have been important as well. We also discuss the limitations of our methodology in the context of the demand theory. Our procedure will be useful as a novel way to analyze global transcription regulation networks and in synthetic biology for the de novo design of genomes. es_ES
dc.description.sponsorship This work was supported by FP7-ICT-043338 (Bacterial Computing with Engineered Populations), ATIGE-Genopole, TIN2006-12860 (Ministry of Science and Innovation [MICINN]), and the Fondation pour la Recherche Medicale grants (to A.J.). S. F. E. is supported by grant BFU2009-06993 (MICINN). We thank B. Palsson, T. Conrad, and M. Isalan for providing us with experimental data from their recent publications, J. Forment for help with computer resources; R. Estrela, G. Rodrigo, for discussions; J. Sardanyes, T. Landrain, L. Janniere, I. Junier, M. P. Zwart, and F. Kepes for critical reading of the manuscript; and the comments provided by anonymous reviewers. en_EN
dc.language Inglés es_ES
dc.publisher National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automated design es_ES
dc.subject Synthetic genomics es_ES
dc.subject Genome refactoring es_ES
dc.subject Evolutionary computation es_ES
dc.title Computational design of genomic transcriptional networks with adaptation to varying environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.1200030109
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TIN2006-12860/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/043338/EU/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Carrera Montesinos, J.; Elena Fito, SF.; Jaramillo Rosales, A. (2012). Computational design of genomic transcriptional networks with adaptation to varying environments. Proceedings of the National Academy of Sciences. 109(38):15277-15282. https://doi.org/10.1073/pnas.1200030109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1073/pnas.1200030109 es_ES
dc.description.upvformatpinicio 15277 es_ES
dc.description.upvformatpfin 15282 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.description.issue 38 es_ES
dc.relation.senia 232203 es_ES
dc.identifier.pmid 22927389 en_EN
dc.identifier.pmcid PMC3458320
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Educación y Ciencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem