- -

Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

Mostrar el registro completo del ítem

Hasiow-Jaroszewska, B.; Czerwoniec, A.; Pospieszny, H.; Elena Fito, SF. (2011). Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein. Virology Journal. 8:1-8. https://doi.org/10.1186/1743-422X-8-318

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81394

Ficheros en el ítem

Metadatos del ítem

Título: Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein
Autor: Hasiow-Jaroszewska, B Czerwoniec, A Pospieszny, H Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Background: Pepino mosaic virus (PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, ...[+]
Palabras clave: Molecular evolution , PepMW , Protein modeling , Selective constraints , TGBp3 , Virus evolution
Derechos de uso: Reconocimiento (by)
Fuente:
Virology Journal. (issn: 1743-422X )
DOI: 10.1186/1743-422X-8-318
Editorial:
BioMed Central
Versión del editor: http://doi.org/10.1186/1743-422X-8-318
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/263318/EU/How the brain codes the past to predict the future/
Agradecimientos:
This study was funded by the Polish Ministry of Science and Higher Education grants 0067/P01/2010/70 (AC) and N N310 163 438 and IP2010 012470 Iuventus Plus (to BHJ). The study was also supported by Foundation for Polish ...[+]
Tipo: Artículo

References

Maroon-Lango CJ, Guaragna MA, Jordan RL, Hammond J, Bandla M, Marquardt SK: Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European -like) US isolate. Arch Virol 2005, 150: 1187-1201. 10.1007/s00705-005-0495-z

Ling KS: Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes 2007, 34: 1-8. 10.1007/s11262-006-0003-x

Hasiów B, Borodynko N, Pospieszny H: Complete genomic RNA sequence of the Polish Pepino mosaic virus isolate belonging to the US2 strain. Virus Genes 2008, 36: 1-8. 10.1007/s11262-007-0165-1 [+]
Maroon-Lango CJ, Guaragna MA, Jordan RL, Hammond J, Bandla M, Marquardt SK: Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European -like) US isolate. Arch Virol 2005, 150: 1187-1201. 10.1007/s00705-005-0495-z

Ling KS: Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes 2007, 34: 1-8. 10.1007/s11262-006-0003-x

Hasiów B, Borodynko N, Pospieszny H: Complete genomic RNA sequence of the Polish Pepino mosaic virus isolate belonging to the US2 strain. Virus Genes 2008, 36: 1-8. 10.1007/s11262-007-0165-1

Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H: Pepino mosaic virus - a pathogen of tomato crops in Poland: biology, evolution and diagnostics. J Plant Protect Res 2010, 50: 477-483. 10.2478/v10045-010-0079-0

Hanssen I, Thomma B: Pepino mosaic virus : a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol 2010, 11: 179-189. 10.1111/j.1364-3703.2009.00600.x

Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H: A single mutation in TGB3 converts mild pathotype of Pepino mosaic virus into necrotic one. Virus Res 2011, 159: 57-61. 10.1016/j.virusres.2011.04.008

Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000, 15: 496-503. 10.1016/S0169-5347(00)01994-7

Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41: 95-98.

Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004, 32: 1792-1797. 10.1093/nar/gkh340

Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignemnts into the corresponding codon alignments. Nucl Acids Res 2006, 34: 609-612. 10.1093/nar/gkl315

Silva MC, Edwards SV: Structure and evolution of a new avian MHC CIass II B gene in a sub-antarctic seabird, the thin-billed prion (Procellariiformes: Pachyptila belcheri ). J Mol Evol 2009, 68: 279-291. 10.1007/s00239-009-9200-2

Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26: 2462-2463. 10.1093/bioinformatics/btq467

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011.

Kosakovsky Pond SL, Frost SDW: Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22: 1208-1222. 10.1093/molbev/msi105

Kosakovsky Pond S, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21: 676-679. 10.1093/bioinformatics/bti079

Kosakovsky Pond SL, Frost SDW: DATAMONKEY: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21: 2531-2533. 10.1093/bioinformatics/bti320

Yang Z, Nielsen R, Goldman N, Pedersen AMK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155: 431-449.

Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 2000, 13: 555-556.

Fares MA: SWAPSC: sliding-window analysis procedure to detect selective constraints. Bioinformatics 2004, 20: 2867-2868. 10.1093/bioinformatics/bth303

Ashkenazy H, Erez E, Martz E, Pupko T, Ben-T N: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucl Acids Res 2010, 38: 529-533. 10.1093/nar/gkq399

Kurowski MA, Bujnicki JM: GeneSilico protein structure prediction meta-server. Nucl Acids Res 2003, 31: 3305-3307. 10.1093/nar/gkg557

McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16: 404-405. 10.1093/bioinformatics/16.4.404

Rost B, Yachdav G, Liu J: The PredictProtein server. Nucleic Acids Res 2004, 32: 321-326. 10.1093/nar/gkh377

Ouali M, King RD: Cascaded multiple classifiers for secondary structure prediction. Protein Sci 2000, 9: 1162-1176. 10.1110/ps.9.6.1162

Adamczak R, Porollo A, Meller J: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 2004, 56: 753-767. 10.1002/prot.20176

Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000, 40: 502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q

Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structure from fragments with similar local sequences using simulated annealing and bayesian scoring function. J Mol Biol 1997, 268: 209-225. 10.1006/jmbi.1997.0959

Siew N, Elofsson A, Rychlewski L, Fischer D: MaxSub: An automated measure to assess the quality of protein structure predictions. Bioinformatics 2000, 16: 776-785. 10.1093/bioinformatics/16.9.776

Wallner B, Elofsson A: Can correct protein models be identified. Protein Sci 2003, 12: 1073-1086. 10.1110/ps.0236803

Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM: MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics 2008, 9: 403. 10.1186/1471-2105-9-403

Baker NA, Sept D, Holst MJ, McCammon JA: Electrostatics of cellular components: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001, 98: 10037-10041. 10.1073/pnas.181342398

Tromas N, Elena SF: The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 2010, 185: 983-989. 10.1534/genetics.110.115915

Kosinski J, Cymerman IA, Feder M, Kurowski MA, Sasin JM, Bujnicki JM: A 'Frankenstein's monster' approach to comparative modeling: merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 2003, 53: 369-79. 10.1002/prot.10545

Morozov SY, Solovyev AG: Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 2003, 84: 1351-1366. 10.1099/vir.0.18922-0

Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RLS: Triple gene block proteins of White clover mosaic potexvirus are required for transport. Virology 1991, 83: 695-702.

Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S: Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol 2009, 90: 1014-24. 10.1099/vir.0.008243-0

Morozov SY, Miroshnichenko NA, Solovyev AG, Zelenina DA, Fedorkin ON, Lukasheva LI, Grachev SA, Chernov BK: In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 1991, 183: 782-785. 10.1016/0042-6822(91)91011-5

Cowan GH, Lioliopoulou F, Ziegler A, Torrance L: Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 2002, 298: 106-115. 10.1006/viro.2002.1435

Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, Zamyatnin AA Jr, Kalinina NO, Schiemann J, Solovyev AG, Morozov SYu: Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 2003, 84: 985-994. 10.1099/vir.0.18885-0

Tourasse NJ, Li WH: Selective constraints, amino acid composition, and the rate of protein evolution. Mol Biol Evol 2000, 17: 656-664.

Farfan M, Minana-Galbis D, Carmenn Fuste M, Loren G: Divergent evolution and purifying selection of the flaA gene sequences in Aeromas . Biol Direct 2009, 4: 23-39. 10.1186/1745-6150-4-23

Hasiów-Jaroszewska B, Jackowiak P, Borodynko N, Figlerowicz M, Pospieszny H: Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes 2010, 41: 260-267. 10.1007/s11262-010-0497-0

Gómez P, Sempere RN, Elena SF, Aranda MA: Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 2009, 83: 12378-12387. 10.1128/JVI.01486-09

DeLano WL: The PyMOL User's Manual. DeLano Scientific, San Carlos, CA, USA; 2002.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem