Carmona, R., & Durrleman, V. (2003). Pricing and Hedging Spread Options. SIAM Review, 45(4), 627-685. doi:10.1137/s0036144503424798
Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323-338. doi:10.1016/0304-405x(77)90005-8
Joy, C., Boyle, P. P., & Tan, K. S. (1996). Quasi-Monte Carlo Methods in Numerical Finance. Management Science, 42(6), 926-938. doi:10.1287/mnsc.42.6.926
[+]
Carmona, R., & Durrleman, V. (2003). Pricing and Hedging Spread Options. SIAM Review, 45(4), 627-685. doi:10.1137/s0036144503424798
Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323-338. doi:10.1016/0304-405x(77)90005-8
Joy, C., Boyle, P. P., & Tan, K. S. (1996). Quasi-Monte Carlo Methods in Numerical Finance. Management Science, 42(6), 926-938. doi:10.1287/mnsc.42.6.926
Kao, W.-H., Lyuu, Y.-D., & Wen, K.-W. (2014). The hexanomial lattice for pricing multi-asset options. Applied Mathematics and Computation, 233, 463-479. doi:10.1016/j.amc.2014.01.173
Pearson, N. D. (1995). An Efficient Approach for Pricing Spread Options. The Journal of Derivatives, 3(1), 76-91. doi:10.3905/jod.1995.407928
Chiarella, C., & Ziveyi, J. (2013). Pricing American options written on two underlying assets. Quantitative Finance, 14(3), 409-426. doi:10.1080/14697688.2013.810811
Boyle, P. P. (1988). A Lattice Framework for Option Pricing with Two State Variables. The Journal of Financial and Quantitative Analysis, 23(1), 1. doi:10.2307/2331019
Company, R., Jódar, L., Fakharany, M., & Casabán, M.-C. (2013). Removing the Correlation Term in Option Pricing Heston Model: Numerical Analysis and Computing. Abstract and Applied Analysis, 2013, 1-11. doi:10.1155/2013/246724
Salmi, S., Toivanen, J., & von Sydow, L. (2013). Iterative Methods for Pricing American Options under the Bates Model. Procedia Computer Science, 18, 1136-1144. doi:10.1016/j.procs.2013.05.279
Toivanen, J. (2009). A Componentwise Splitting Method for Pricing American Options Under the Bates Model. Applied and Numerical Partial Differential Equations, 213-227. doi:10.1007/978-90-481-3239-3_16
Zvan, R., Forsyth, P., & Vetzal, K. (2003). Negative coefficients in two-factor option pricing models. The Journal of Computational Finance, 7(1), 37-73. doi:10.21314/jcf.2003.096
Düring, B., Fournié, M., & Heuer, C. (2014). High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. Journal of Computational and Applied Mathematics, 271, 247-266. doi:10.1016/j.cam.2014.04.016
In ʼt Hout, K. J., & Mishra, C. (2013). Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms. Applied Numerical Mathematics, 74, 83-94. doi:10.1016/j.apnum.2013.07.003
CHIARELLA, C., KANG, B., MEYER, G. H., & ZIOGAS, A. (2009). THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES. International Journal of Theoretical and Applied Finance, 12(03), 393-425. doi:10.1142/s0219024909005270
Fakharany, M., Company, R., & Jódar, L. (2014). Positive finite difference schemes for a partial integro-differential option pricing model. Applied Mathematics and Computation, 249, 320-332. doi:10.1016/j.amc.2014.10.064
Duffy, D. J. (2006). Finite Difference Methods in Financial Engineering. doi:10.1002/9781118673447
Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921
Forsyth, P. A., & Vetzal, K. R. (2002). Quadratic Convergence for Valuing American Options Using a Penalty Method. SIAM Journal on Scientific Computing, 23(6), 2095-2122. doi:10.1137/s1064827500382324
Huang, J., Subrahmanyam, M. G., & Yu, G. G. (1996). Pricing and Hedging American Options: A Recursive Integration Method. Review of Financial Studies, 9(1), 277-300. doi:10.1093/rfs/9.1.277
Ibáñez, A., & Zapatero, F. (2004). Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier. Journal of Financial and Quantitative Analysis, 39(2), 253-275. doi:10.1017/s0022109000003069
[-]