Mostrar el registro sencillo del ítem
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Egorova, Vera | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2017-05-18T13:14:26Z | |
dc.date.available | 2017-05-18T13:14:26Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/81417 | |
dc.description.abstract | [EN] This paper deals with numerical analysis and computing of spread option pricing problem described by a two-spatial variables partial differential equation. Both European and American cases are treated. Taking advantage of a cross derivative removing technique, an explicit difference scheme is developed retaining the benefits of the one-dimensional finite difference method, preserving positivity, accuracy, and computational time efficiency. Numerical results illustrate the interest of the approach. | es_ES |
dc.description.sponsorship | This work has been partially supported by the European Union in the FP7- PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Econom´ıa y Competitividad Spanish Grant MTM2013-41765-P. | |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An efficient method for solving spread option pricing problem: numerical analysis and computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2016/1549492 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/304617/PEOPLE-2012-ITN/EU/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA. (2016). An efficient method for solving spread option pricing problem: numerical analysis and computing. Abstract and Applied Analysis. 2016:1-11. https://doi.org/10.1155/2016/1549492 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2016/1549492 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2016 | es_ES |
dc.relation.senia | 321993 | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Carmona, R., & Durrleman, V. (2003). Pricing and Hedging Spread Options. SIAM Review, 45(4), 627-685. doi:10.1137/s0036144503424798 | es_ES |
dc.description.references | Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323-338. doi:10.1016/0304-405x(77)90005-8 | es_ES |
dc.description.references | Joy, C., Boyle, P. P., & Tan, K. S. (1996). Quasi-Monte Carlo Methods in Numerical Finance. Management Science, 42(6), 926-938. doi:10.1287/mnsc.42.6.926 | es_ES |
dc.description.references | Kao, W.-H., Lyuu, Y.-D., & Wen, K.-W. (2014). The hexanomial lattice for pricing multi-asset options. Applied Mathematics and Computation, 233, 463-479. doi:10.1016/j.amc.2014.01.173 | es_ES |
dc.description.references | Pearson, N. D. (1995). An Efficient Approach for Pricing Spread Options. The Journal of Derivatives, 3(1), 76-91. doi:10.3905/jod.1995.407928 | es_ES |
dc.description.references | Chiarella, C., & Ziveyi, J. (2013). Pricing American options written on two underlying assets. Quantitative Finance, 14(3), 409-426. doi:10.1080/14697688.2013.810811 | es_ES |
dc.description.references | Boyle, P. P. (1988). A Lattice Framework for Option Pricing with Two State Variables. The Journal of Financial and Quantitative Analysis, 23(1), 1. doi:10.2307/2331019 | es_ES |
dc.description.references | Company, R., Jódar, L., Fakharany, M., & Casabán, M.-C. (2013). Removing the Correlation Term in Option Pricing Heston Model: Numerical Analysis and Computing. Abstract and Applied Analysis, 2013, 1-11. doi:10.1155/2013/246724 | es_ES |
dc.description.references | Salmi, S., Toivanen, J., & von Sydow, L. (2013). Iterative Methods for Pricing American Options under the Bates Model. Procedia Computer Science, 18, 1136-1144. doi:10.1016/j.procs.2013.05.279 | es_ES |
dc.description.references | Toivanen, J. (2009). A Componentwise Splitting Method for Pricing American Options Under the Bates Model. Applied and Numerical Partial Differential Equations, 213-227. doi:10.1007/978-90-481-3239-3_16 | es_ES |
dc.description.references | Zvan, R., Forsyth, P., & Vetzal, K. (2003). Negative coefficients in two-factor option pricing models. The Journal of Computational Finance, 7(1), 37-73. doi:10.21314/jcf.2003.096 | es_ES |
dc.description.references | Düring, B., Fournié, M., & Heuer, C. (2014). High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. Journal of Computational and Applied Mathematics, 271, 247-266. doi:10.1016/j.cam.2014.04.016 | es_ES |
dc.description.references | In ʼt Hout, K. J., & Mishra, C. (2013). Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms. Applied Numerical Mathematics, 74, 83-94. doi:10.1016/j.apnum.2013.07.003 | es_ES |
dc.description.references | CHIARELLA, C., KANG, B., MEYER, G. H., & ZIOGAS, A. (2009). THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES. International Journal of Theoretical and Applied Finance, 12(03), 393-425. doi:10.1142/s0219024909005270 | es_ES |
dc.description.references | Fakharany, M., Company, R., & Jódar, L. (2014). Positive finite difference schemes for a partial integro-differential option pricing model. Applied Mathematics and Computation, 249, 320-332. doi:10.1016/j.amc.2014.10.064 | es_ES |
dc.description.references | Duffy, D. J. (2006). Finite Difference Methods in Financial Engineering. doi:10.1002/9781118673447 | es_ES |
dc.description.references | Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921 | es_ES |
dc.description.references | Forsyth, P. A., & Vetzal, K. R. (2002). Quadratic Convergence for Valuing American Options Using a Penalty Method. SIAM Journal on Scientific Computing, 23(6), 2095-2122. doi:10.1137/s1064827500382324 | es_ES |
dc.description.references | Huang, J., Subrahmanyam, M. G., & Yu, G. G. (1996). Pricing and Hedging American Options: A Recursive Integration Method. Review of Financial Studies, 9(1), 277-300. doi:10.1093/rfs/9.1.277 | es_ES |
dc.description.references | Ibáñez, A., & Zapatero, F. (2004). Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier. Journal of Financial and Quantitative Analysis, 39(2), 253-275. doi:10.1017/s0022109000003069 | es_ES |