Mostrar el registro sencillo del ítem
dc.contributor.author | Talens Vila, Clara | es_ES |
dc.contributor.author | Castro Giráldez, Marta | es_ES |
dc.contributor.author | Fito Suñer, Pedro José | es_ES |
dc.date.accessioned | 2017-05-22T07:04:17Z | |
dc.date.available | 2017-05-22T07:04:17Z | |
dc.date.issued | 2016-04 | |
dc.identifier.issn | 0260-8774 | |
dc.identifier.uri | http://hdl.handle.net/10251/81546 | |
dc.description.abstract | [EN] The citrus juice industry produces a great amount of waste that needs innovation and development to become products. There is a continuous demand to develop innovative approaches for the valorization of citrus by-products by applying environmentally and economically sustainable processes. One of the critical steps for by-products stabilization is the drying operation. The aim of this work was to develop a thermodynamic model for understanding internal heating and water transport mechanisms occurring from the inside to the outside of orange peels during hot air-microwave drying, and to predict the chemical and structural transformations. Different microwave energies (2, 4 and 6 W/g) combined with hot air (HAD) at 55 degrees C were used for drying citrus peels (5,15, 40, 60 and 120 min). Mass, volume, surface, water activity, moisture, and permittivity were measured in fresh and dried samples. A thermodynamic model was developed to explain the mechanisms involved in mass and energy transports throughout the combined drying by hot air and microwave. This model allows optimizing the traditional hot air drying, by coupling microwave, of orange peel waste as a novel process for citrus by-products valorization, reducing the process time and therefore process costs. (C) 2015 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the Basque Government for the financial support of the project (LasaiFood). The author Marta Castro-Giraldez wants to thanks to the UPV Postdoctoral Program (PAID-10-14) from Universidad Politecnica de Valencia for their support. The authors acknowledge the financial support from the Spanish Ministerio de Ciencia e Innovacion throughout the project AGL2011-30096. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Food Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hot airemicrowave drying | es_ES |
dc.subject | Orange peel | es_ES |
dc.subject | Thermodynamics | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | A thermodynamic model for hot air microwave drying of orange peel | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfoodeng.2015.12.001 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2011-30096/ES/DESARROLLO DE UN SISTEMA NO DESTRUCTIVO DE CONTROL DE CALIDAD Y SEGURIDAD EN CARNE Y PRODUCTOS CARNICOS MEDIANTE ESPECTROSCOPIA DIELECTRICA./ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Talens Vila, C.; Castro Giráldez, M.; Fito Suñer, PJ. (2016). A thermodynamic model for hot air microwave drying of orange peel. Journal of Food Engineering. 175:33-42. https://doi.org/10.1016/j.jfoodeng.2015.12.001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.jfoodeng.2015.12.001 | es_ES |
dc.description.upvformatpinicio | 33 | es_ES |
dc.description.upvformatpfin | 42 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.relation.senia | 306371 | es_ES |
dc.identifier.eissn | 1873-5770 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |