- -

An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences

Mostrar el registro completo del ítem

Clemente Bellido, M.; Rey, B.; Rodríguez Pujadas, A.; Barros Loscertales, A.; Baños, RM.; Botella, C.; Alcañiz Raya, ML.... (2014). An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences. Interacting with Computers. 26(3):269-284. https://doi.org/10.1093/iwc/iwt037

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81618

Ficheros en el ítem

Metadatos del ítem

Título: An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences
Autor: Clemente Bellido, Miriam Rey, Beatriz Rodríguez Pujadas, Aina Barros Loscertales, Alfonso Baños, Rosa M. Botella, Cristina Alcañiz Raya, Mariano Luis Ávila, César
Entidad UPV: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] In the field of virtual reality (VR), many efforts have been made to analyze presence, the sense of being in the virtual world. However, it is only recently that functional magnetic resonance imaging (fMRI) has been ...[+]
Palabras clave: Presence , Virtual Reality , Human Computer Interaction (HCI)
Derechos de uso: Reserva de todos los derechos
Fuente:
Interacting with Computers. (issn: 0953-5438 ) (eissn: 1873-7951 )
DOI: 10.1093/iwc/iwt037
Editorial:
Oxford University Press (OUP)
Versión del editor: http://doi.org/10.1093/iwc/iwt037
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2010-20187/ES/ENTORNOS INMERSIVOS Y PERSUASIVOS PARA LA EVALUACION Y ENTRENAMIENTO DE ESTRATEGIAS DE REGULACION EMOCIONAL. APLICACION A LA EDUCACION PSICOSOCIAL EN ADOLESCENTES/
info:eu-repo/grantAgreement/MEC//SEJ2006-14301/ES/NUEVAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION: INTEGRACION Y CONSOLIDACION DE SU USO EN CIENCIAS SOCIALES PARA MEJORAR LA SALUD, LA CALIDAD DE VIDA Y EL BIENESTAR./
info:eu-repo/grantAgreement/MEC//CSD2007-00012/ES/Bilingüismo y Neurociencia Cognitiva/
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F157/ES/Promoción del bienestar a través de las tecnologías de la información y comunicación (probientic)/
Agradecimientos:
This study was funded by the Ministerio de Educación y Ciencia Spain, Project Game Teen (TIN2010-20187) and partially by projects Consolider-C (SEJ2006-14301/PSIC), ‘CIBER of Physiopathology of Obesity and Nutrition, an ...[+]
Tipo: Artículo

References

Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The Parahippocampus Subserves Topographical Learning in Man. Cerebral Cortex, 6(6), 823-829. doi:10.1093/cercor/6.6.823

Alcañiz, M., Rey, B., Tembl, J., & Parkhutik, V. (2009). A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence: Teleoperators and Virtual Environments, 18(2), 97-111. doi:10.1162/pres.18.2.97

Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220-232. doi:10.1016/j.bandc.2005.11.009 [+]
Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The Parahippocampus Subserves Topographical Learning in Man. Cerebral Cortex, 6(6), 823-829. doi:10.1093/cercor/6.6.823

Alcañiz, M., Rey, B., Tembl, J., & Parkhutik, V. (2009). A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence: Teleoperators and Virtual Environments, 18(2), 97-111. doi:10.1162/pres.18.2.97

Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220-232. doi:10.1016/j.bandc.2005.11.009

Astur, R. S., St. Germain, S. A., Baker, E. K., Calhoun, V., Pearlson, G. D., & Constable, R. T. (2005). fMRI Hippocampal Activity During a VirtualRadial Arm Maze. Applied Psychophysiology and Biofeedback, 30(3), 307-317. doi:10.1007/s10484-005-6385-z

Baños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiña, C., & Alcañiz, M. (2000). Presence and Reality Judgment in Virtual Environments: A Unitary Construct? CyberPsychology & Behavior, 3(3), 327-335. doi:10.1089/10949310050078760

Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., & Schneider, W. (2003). A Virtual Reality System for Neurobehavioral and Functional MRI Studies. CyberPsychology & Behavior, 6(3), 259-266. doi:10.1089/109493103322011542

Maertens, M. (2008). Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in Human Neuroscience, 2, 1-7. doi:10.3389/neuro.09.002.2008

Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. CyberPsychology & Behavior, 9(1), 30-45. doi:10.1089/cpb.2006.9.30

Belliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., … Rosen, B. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716-719. doi:10.1126/science.1948051

Born, R. T., & Bradley, D. C. (2005). STRUCTURE AND FUNCTION OF VISUAL AREA MT. Annual Review of Neuroscience, 28(1), 157-189. doi:10.1146/annurev.neuro.26.041002.131052

Canli, T., Zhao, Z., Desmond, J. E., Kang, E., Gross, J., & Gabrieli, J. D. E. (2001). An fMRI study of personality influences on brain reactivity to emotional stimuli. Behavioral Neuroscience, 115(1), 33-42. doi:10.1037/0735-7044.115.1.33

Clemente, M., Rodríguez, A., Rey, B., Rodríguez, A., Baños, R. M., Botella, C., … Ávila, C. (2011). Analyzing the Level of Presence While Navigating in a Virtual Environment during an fMRI Scan. Lecture Notes in Computer Science, 475-478. doi:10.1007/978-3-642-23768-3_61

(Bud) Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59-70. doi:10.1038/nrn2555

Dilger, S., Straube, T., Mentzel, H.-J., Fitzek, C., Reichenbach, J. R., Hecht, H., … Miltner, W. H. R. (2003). Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neuroscience Letters, 348(1), 29-32. doi:10.1016/s0304-3940(03)00647-5

Dodds, C. M., Morein-Zamir, S., & Robbins, T. W. (2010). Dissociating Inhibition, Attention, and Response Control in the Frontoparietal Network Using Functional Magnetic Resonance Imaging. Cerebral Cortex, 21(5), 1155-1165. doi:10.1093/cercor/bhq187

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601. doi:10.1038/33402

Flach, J. M., & Holden, J. G. (1998). The Reality of Experience: Gibson’s Way. Presence: Teleoperators and Virtual Environments, 7(1), 90-95. doi:10.1162/105474698565550

Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J., Williams, S. C. R., Frackowiak, R. S. J., & Turner, R. (1995). Analysis of fMRI Time-Series Revisited. NeuroImage, 2(1), 45-53. doi:10.1006/nimg.1995.1007

GEAKE, J., & HANSEN, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555-564. doi:10.1016/j.neuroimage.2005.01.035

Haldane, M., Cunningham, G., Androutsos, C., & Frangou, S. (2008). Structural brain correlates of response inhibition in Bipolar Disorder I. Journal of Psychopharmacology, 22(2), 138-143. doi:10.1177/0269881107082955

Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The Well-Worn Route and the Path Less Traveled. Neuron, 37(5), 877-888. doi:10.1016/s0896-6273(03)00095-3

Heeter, C. (1992). Being There: The Subjective Experience of Presence. Presence: Teleoperators and Virtual Environments, 1(2), 262-271. doi:10.1162/pres.1992.1.2.262

De Castro, F. (2009). Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex. Frontiers in Neuroscience. doi:10.3389/neuro.22.004.2009

Johnson, P. B., Ferraina, S., Bianchi, L., & Caminiti, R. (1996). Cortical Networks for Visual Reaching: Physiological and Anatomical Organization of Frontal and Parietal Lobe Arm Regions. Cerebral Cortex, 6(2), 102-119. doi:10.1093/cercor/6.2.102

Karnath, H.-O. (2005). Awareness of the Functioning of One’s Own Limbs Mediated by the Insular Cortex? Journal of Neuroscience, 25(31), 7134-7138. doi:10.1523/jneurosci.1590-05.2005

Koechlin, E. (2003). The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science, 302(5648), 1181-1185. doi:10.1126/science.1088545

Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35(2), 199-210. doi:10.1017/s0048577298001991

Le Bihan, D., Turner, R., Zeffiro, T. A., Cuenod, C. A., Jezzard, P., & Bonnerot, V. (1993). Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proceedings of the National Academy of Sciences, 90(24), 11802-11805. doi:10.1073/pnas.90.24.11802

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and Virtual Environments, 10(3), 282-297. doi:10.1162/105474601300343612

Loomis, J. M. (1992). Distal Attribution and Presence. Presence: Teleoperators and Virtual Environments, 1(1), 113-119. doi:10.1162/pres.1992.1.1.113

Mellet, E., Laou, L., Petit, L., Zago, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2009). Impact of the virtual reality on the neural representation of an environment. Human Brain Mapping, 31(7), 1065-1075. doi:10.1002/hbm.20917

Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57-77. doi:10.1016/0166-4328(82)90081-x

Mraz, R., Hong, J., Quintin, G., Staines, W. R., McIlroy, W. E., Zakzanis, K. K., & Graham, S. J. (2003). A Platform for Combining Virtual Reality Experiments with Functional Magnetic Resonance Imaging. CyberPsychology & Behavior, 6(4), 359-368. doi:10.1089/109493103322278736

Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience, 14(8), 1215-1229. doi:10.1162/089892902760807212

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. doi:10.1016/0028-3932(71)90067-4

Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28(10), 1021-1034. doi:10.1016/0028-3932(90)90137-d

Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M. C. (2001). Different Brain Correlates for Watching Real and Virtual Hand Actions. NeuroImage, 14(3), 749-758. doi:10.1006/nimg.2001.0872

Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44-54. doi:10.1007/s002210000399

Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., … Bilder, R. M. (2002). Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study. NeuroImage, 15(2), 396-406. doi:10.1006/nimg.2001.0988

Riva, G., Waterworth, J. A., Waterworth, E. L., & Mantovani, F. (2011). From intention to action: The role of presence. New Ideas in Psychology, 29(1), 24-37. doi:10.1016/j.newideapsych.2009.11.002

Rey, B., Alcañiz, M., Tembl, J., & Parkhutik, V. (2009). Brain activity and presence: a preliminary study in different immersive conditions using transcranial Doppler monitoring. Virtual Reality, 14(1), 55-65. doi:10.1007/s10055-009-0141-2

Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. doi:10.1038/nrn1651

Scheibe, C., Wartenburger, I., Wüstenberg, T., Kathmann, N., Villringer, A., & Heekeren, H. R. (2006). Neural correlates of the interaction between transient and sustained processes: A mixed blocked/event-related fMRI study. Human Brain Mapping, 27(7), 545-551. doi:10.1002/hbm.20199

Schuemie, M. J., van der Straaten, P., Krijn, M., & van der Mast, C. A. P. G. (2001). Research on Presence in Virtual Reality: A Survey. CyberPsychology & Behavior, 4(2), 183-201. doi:10.1089/109493101300117884

Smith, S. M. (2004). Overview of fMRI analysis. The British Journal of Radiology, 77(suppl_2), S167-S175. doi:10.1259/bjr/33553595

Usoh, M., Catena, E., Arman, S., & Slater, M. (2000). Using Presence Questionnaires in Reality. Presence: Teleoperators and Virtual Environments, 9(5), 497-503. doi:10.1162/105474600566989

Vanni, S., Tanskanen, T., Seppa, M., Uutela, K., & Hari, R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proceedings of the National Academy of Sciences, 98(5), 2776-2780. doi:10.1073/pnas.041600898

Wolf, U., Rapoport, M. J., & Schweizer, T. A. (2009). Evaluating the Affective Component of the Cerebellar Cognitive Affective Syndrome. Journal of Neuropsychiatry, 21(3), 245-253. doi:10.1176/appi.neuropsych.21.3.245

Zahorik, P., & Jenison, R. L. (1998). Presence as Being-in-the-World. Presence: Teleoperators and Virtual Environments, 7(1), 78-89. doi:10.1162/105474698565541

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem