- -

Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance

Mostrar el registro completo del ítem

Corbatón Báguena, MJ.; Vincent Vela, MC.; Gozálvez-Zafrilla, JM.; Alvarez Blanco, S.; Lora-García, J.; Catalán Martínez, D. (2016). Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance. Separation and Purification Technology. 170:434-444. https://doi.org/10.1016/j.seppur.2016.07.007

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81740

Ficheros en el ítem

Metadatos del ítem

Título: Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance
Autor: Corbatón Báguena, María José Vincent Vela, Maria Cinta Gozálvez-Zafrilla, José M. Alvarez Blanco, Silvia Lora-García, Jaime Catalán Martínez, David
Entidad UPV: Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Fecha difusión:
Resumen:
In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes has been modeled using artificial neural networks. The artificial neural network tested was the multilayer perceptron. ...[+]
Palabras clave: Artificial neural networks , Crossflow ultrafiltration , Fouling , Modeling
Derechos de uso: Reserva de todos los derechos
Fuente:
Separation and Purification Technology. (issn: 1383-5866 ) (eissn: 1873-3794 )
DOI: 10.1016/j.seppur.2016.07.007
Editorial:
Elsevier
Versión del editor: http://doi.org/10.1016/j.seppur.2016.07.007
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTM2010-20248/ES/SIMULACION Y OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS DE PROCESOS DE MEMBRANAS PARA EL TRATAMIENTO Y RECUPERACION DE AGUAS SALOBRES/
Agradecimientos:
The Spanish Ministry for Science and Innovation (Project OPTIMEM CTM2010-20248) is kindly acknowledged.
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem