Corbatón Báguena, MJ.; Vincent Vela, MC.; Gozálvez-Zafrilla, JM.; Alvarez Blanco, S.; Lora-García, J.; Catalán Martínez, D. (2016). Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance. Separation and Purification Technology. 170:434-444. https://doi.org/10.1016/j.seppur.2016.07.007
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81740
Title:
|
Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance
|
Author:
|
Corbatón Báguena, María José
Vincent Vela, Maria Cinta
Gozálvez-Zafrilla, José M.
Alvarez Blanco, Silvia
Lora-García, Jaime
Catalán Martínez, David
|
UPV Unit:
|
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
|
Issued date:
|
|
Abstract:
|
In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes has been modeled using artificial neural networks. The artificial neural network tested was the multilayer perceptron. ...[+]
In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes has been modeled using artificial neural networks. The artificial neural network tested was the multilayer perceptron. Operating parameters (transmembrane pressure, crossflow velocity and time) and dynamic fouling were used as inputs to predict the permeate flux. Several pretreatments of the experimental data and the optimal selection of the parameters of the neural networks were studied to improve the fitting accuracy.
The fitting accuracy obtained with artificial neural networks was compared with Hermia pore blocking models adapted to crossflow ultrafiltration. The artificial neural networks generate simulations whose performance was comparable to that of Hermia's models adapted to crossflow ultrafiltration. Considering the computational speed, high accuracy and the ease of the artificial neural networks methodology, they are a competitive, powerful and fast alternative for dynamic crossflow ultrafiltration modeling.
[-]
|
Subjects:
|
Artificial neural networks
,
Crossflow ultrafiltration
,
Fouling
,
Modeling
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Separation and Purification Technology. (issn:
1383-5866
) (eissn:
1873-3794
)
|
DOI:
|
10.1016/j.seppur.2016.07.007
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://doi.org/10.1016/j.seppur.2016.07.007
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//CTM2010-20248/ES/SIMULACION Y OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS DE PROCESOS DE MEMBRANAS PARA EL TRATAMIENTO Y RECUPERACION DE AGUAS SALOBRES/
|
Thanks:
|
The Spanish Ministry for Science and Innovation (Project OPTIMEM CTM2010-20248) is kindly acknowledged.
|
Type:
|
Artículo
|