- -

Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corbatón Báguena, María José es_ES
dc.contributor.author Vincent Vela, Maria Cinta es_ES
dc.contributor.author Gozálvez-Zafrilla, José M. es_ES
dc.contributor.author Alvarez Blanco, Silvia es_ES
dc.contributor.author Lora-García, Jaime es_ES
dc.contributor.author Catalán Martínez, David es_ES
dc.date.accessioned 2017-05-25T11:44:38Z
dc.date.available 2017-05-25T11:44:38Z
dc.date.issued 2016-10-01
dc.identifier.issn 1383-5866
dc.identifier.uri http://hdl.handle.net/10251/81740
dc.description.abstract In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes has been modeled using artificial neural networks. The artificial neural network tested was the multilayer perceptron. Operating parameters (transmembrane pressure, crossflow velocity and time) and dynamic fouling were used as inputs to predict the permeate flux. Several pretreatments of the experimental data and the optimal selection of the parameters of the neural networks were studied to improve the fitting accuracy. The fitting accuracy obtained with artificial neural networks was compared with Hermia pore blocking models adapted to crossflow ultrafiltration. The artificial neural networks generate simulations whose performance was comparable to that of Hermia's models adapted to crossflow ultrafiltration. Considering the computational speed, high accuracy and the ease of the artificial neural networks methodology, they are a competitive, powerful and fast alternative for dynamic crossflow ultrafiltration modeling. es_ES
dc.description.sponsorship The Spanish Ministry for Science and Innovation (Project OPTIMEM CTM2010-20248) is kindly acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural networks es_ES
dc.subject Crossflow ultrafiltration es_ES
dc.subject Fouling es_ES
dc.subject Modeling es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2016.07.007
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2010-20248/ES/SIMULACION Y OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS DE PROCESOS DE MEMBRANAS PARA EL TRATAMIENTO Y RECUPERACION DE AGUAS SALOBRES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Corbatón Báguena, MJ.; Vincent Vela, MC.; Gozálvez-Zafrilla, JM.; Alvarez Blanco, S.; Lora-García, J.; Catalán Martínez, D. (2016). Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance. Separation and Purification Technology. 170:434-444. https://doi.org/10.1016/j.seppur.2016.07.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.seppur.2016.07.007 es_ES
dc.description.upvformatpinicio 434 es_ES
dc.description.upvformatpfin 444 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 170 es_ES
dc.relation.senia 315648 es_ES
dc.identifier.eissn 1873-3794
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem