Mostrar el registro completo del ítem
Folch Fortuny, A.; Arteaga Moreno, FJ.; Ferrer, A. (2016). Assessment of maximum likelihood PCA missing data imputation. Journal of Chemometrics. 30(7):386-393. https://doi.org/10.1002/cem.2804
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81809
Título: | Assessment of maximum likelihood PCA missing data imputation | |
Autor: | Arteaga Moreno, Francisco Javier | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
Maximum likelihood principal component analysis (MLPCA) was originally proposed to incorporate measurement error variance information in principal component analysis (PCA) models. MLPCA can be used to fit PCA models in the ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | http://doi.org/10.1002/cem.2804 | |
Código del Proyecto: |
|
|
Agradecimientos: |
Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02 and DPI2014-55276-C5-1R, and the Spanish Ministry ...[+]
|
|
Tipo: |
|