- -

Assessment of maximum likelihood PCA missing data imputation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of maximum likelihood PCA missing data imputation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Folch Fortuny, Abel es_ES
dc.contributor.author Arteaga Moreno, Francisco Javier es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2017-05-26T09:08:51Z
dc.date.available 2017-05-26T09:08:51Z
dc.date.issued 2016-07
dc.identifier.issn 0886-9383
dc.identifier.uri http://hdl.handle.net/10251/81809
dc.description.abstract Maximum likelihood principal component analysis (MLPCA) was originally proposed to incorporate measurement error variance information in principal component analysis (PCA) models. MLPCA can be used to fit PCA models in the presence of missing data, simply by assigning very large variances to the non-measured values. An assessment of maximum likelihood missing data imputation is performed in this paper, analysing the algorithm of MLPCA and adapting several methods for PCA model building with missing data to its maximum likelihood version. In this way, known data regression (KDR), KDR with principal component regression (PCR), KDR with partial least squares regression (PLS) and trimmed scores regression (TSR) methods are implemented within the MLPCA method to work as different imputation steps. Six data sets are analysed using several percentages of missing data, comparing the performance of the original algorithm, and its adapted regression-based methods, with other state-of-the-art methods. es_ES
dc.description.sponsorship Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02 and DPI2014-55276-C5-1R, and the Spanish Ministry of Economy and Competitiveness through grant ECO2013-43353-R. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Maximum likelihood principal component analysis es_ES
dc.subject missing data es_ES
dc.subject regression-based methods es_ES
dc.subject PCA model building es_ES
dc.subject trimmed scores regression es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Assessment of maximum likelihood PCA missing data imputation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.2804
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Folch Fortuny, A.; Arteaga Moreno, FJ.; Ferrer, A. (2016). Assessment of maximum likelihood PCA missing data imputation. Journal of Chemometrics. 30(7):386-393. https://doi.org/10.1002/cem.2804 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/cem.2804 es_ES
dc.description.upvformatpinicio 386 es_ES
dc.description.upvformatpfin 393 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 316716 es_ES
dc.identifier.eissn 1099-128X
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem