Mostrar el registro sencillo del ítem
dc.contributor.author | Folch Fortuny, Abel | es_ES |
dc.contributor.author | Arteaga Moreno, Francisco Javier | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2017-05-26T09:08:51Z | |
dc.date.available | 2017-05-26T09:08:51Z | |
dc.date.issued | 2016-07 | |
dc.identifier.issn | 0886-9383 | |
dc.identifier.uri | http://hdl.handle.net/10251/81809 | |
dc.description.abstract | Maximum likelihood principal component analysis (MLPCA) was originally proposed to incorporate measurement error variance information in principal component analysis (PCA) models. MLPCA can be used to fit PCA models in the presence of missing data, simply by assigning very large variances to the non-measured values. An assessment of maximum likelihood missing data imputation is performed in this paper, analysing the algorithm of MLPCA and adapting several methods for PCA model building with missing data to its maximum likelihood version. In this way, known data regression (KDR), KDR with principal component regression (PCR), KDR with partial least squares regression (PLS) and trimmed scores regression (TSR) methods are implemented within the MLPCA method to work as different imputation steps. Six data sets are analysed using several percentages of missing data, comparing the performance of the original algorithm, and its adapted regression-based methods, with other state-of-the-art methods. | es_ES |
dc.description.sponsorship | Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02 and DPI2014-55276-C5-1R, and the Spanish Ministry of Economy and Competitiveness through grant ECO2013-43353-R. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Chemometrics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Maximum likelihood principal component analysis | es_ES |
dc.subject | missing data | es_ES |
dc.subject | regression-based methods | es_ES |
dc.subject | PCA model building | es_ES |
dc.subject | trimmed scores regression | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Assessment of maximum likelihood PCA missing data imputation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cem.2804 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Folch Fortuny, A.; Arteaga Moreno, FJ.; Ferrer, A. (2016). Assessment of maximum likelihood PCA missing data imputation. Journal of Chemometrics. 30(7):386-393. https://doi.org/10.1002/cem.2804 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/cem.2804 | es_ES |
dc.description.upvformatpinicio | 386 | es_ES |
dc.description.upvformatpfin | 393 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 316716 | es_ES |
dc.identifier.eissn | 1099-128X | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |