- -

Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures

Show full item record

Ivanova, ME.; Escolástico Rozalén, S.; Balaguer Ramirez, M.; Palisaitis, J.; Sohn, YJ.; Meulenber, WA.; Guillon, O.... (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures. Scientific Reports. 6:1-14. doi:10.1038/srep34773

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81816

Files in this item

Item Metadata

Title: Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying ...[+]
Subjects: Stronium cerate membranes , Proton-conducting oxides , GD-Doped ceria , Electrical-properties , Chemical-stability , Ceramic membranes , Permeation properties , Transport-properties , H-2/CO2 Separation , Ionic-conductivity
Copyrigths: Reserva de todos los derechos
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep34773
Nature Publishing Group
Publisher version: http://doi.org/10.1038/srep34773
This work has been conducted with the financial support by the Helmholtz Association under the Research Programme Energy Efficiency, Materials and Resources. Financial funding from the Spanish Government (ENE2014-57651 and ...[+]
Type: Artículo


Meulenberg, W. A., Ivanova, M. E., Serra, J. M. & Roitsch, S. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 541–567 (2011).

Sørensen, B. Hydrogen and Fuel Cells. (2012).

Dincer, I. & Zamfirescu, C. Advanced Power Generation Systems (2014). [+]
Meulenberg, W. A., Ivanova, M. E., Serra, J. M. & Roitsch, S. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 541–567 (2011).

Sørensen, B. Hydrogen and Fuel Cells. (2012).

Dincer, I. & Zamfirescu, C. Advanced Power Generation Systems (2014).

Drioli, E., Stankiewicz, A. I. & Macedonio, F. Membrane engineering in process intensification-An overview. J. Memb. Sci. 380, 1–8 (2011).

Franz, J. & Scherer, V. Impact of ceramic membranes for CO2 separation on IGCC power plant performance. Energy Procedia 4, 645–652 (2011).

Higman, C. & van der Burgt, M. In Gasification (Second Edition) 91–191 (Gulf Professional Publishing, 2008).

van Holt, D. et al. Ceramic materials for H2 transport membranes applicable for gas separation under coal-gasification-related conditions. J. Eur. Cer. Soc. 34, 2381–2389 (2014).

Stoukides, M. Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook. Catal. Rev. - Science and Engineering 42, 1–70 (2000).

Marnellos, G., Zisekas, S. & Stoukides, M. Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors. J. Catal. 193, 80–87 (2000).

Kjølseth, C. & Vestre, P. C. Proton conducting membrane (2011).

Escolastico, S., Solis, C., Scherb, T., Schumacher, G. & Serra, J. M. Hydrogen separation in La5.5WO11.25δ membranes. J. Memb. Sci. 444, 276–284 (2013).

Basile, A., Gallucci, F. & Tosti, S. In Membrane Science and Technology Vol. 13, 255–323 (2008).

Franz, J. & Scherer, V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J. Memb. Sci. 359, 173–183 (2010).

Wang, N., Mundstock, A., Liu, Y., Huang, A. & Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 124, 27–36 (2015).

Wang, N. et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J. Mater. Chem. A 3, 4722–4728 (2015).

Korelskiy, D. et al. Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3, 12500–12506 (2015).

Ngamou, P. H. T. et al. Tailoring the structure and gas permeation properties of silica membranes via binary metal oxides doping. RSC Adv. 5, 82717–82725 (2015).

Van Gestel, T., Sebold, D., Hauler, F., Meulenberg, W. A. & Buchkremer, H.-P. Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: Evaluation of SiO2, ZrO2, Y2O3–ZrO2 and TiO2–ZrO2 sol–gel membranes. J. Memb. Sci. 359, 64–79 (2010).

Kreuer, K. D. In Annual Review of Materials Research Vol. 33, 333–359 (2003).

Medvedev, D. et al. BaCeO3: Materials development, properties and application. Prog. Mater. Sci. 60, 72–129 (2014).

Shimura, T., Fujimoto, S. & Iwahara, H. Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics 143, 117–123 (2001).

Meulenberg, W. A. et al. (US Patent App. 13/810,296, 2011).

Haugsrud, R. Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er). Solid State Ionics 178, 555–560 (2007).

Seeger, J. et al. Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6-xWO12-y . Inorg Chem 52, 10375–10386 (2013).

Escolastico, S. et al. Enhanced H2 separation through mixed proton-electron conducting membranes based on La5.5W0.8M0.2O11.25-δ . ChemSusChem 6, 1523–1532 (2013).

Deibert, W., Ivanova, M. E., Meulenberg, W. A., Vaßen, R. & Guillon, O. Preparation and sintering behaviour of La5.4WO12-δ asymmetric membranes with optimised microstructure for hydrogen separation. J. Memb. Sci. 492, 439–451 (2015).

Phair, J. W. & Badwal, S. P. S. Review of proton conductors for hydrogen separation. Ionics 12, 103–115 (2006).

Haugsrud, R. & Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5, 193–196 (2006).

Mather, G. C., Fisher, C. A. J. & Islam, M. S. Defects, dopants, and protons in LaNbO4 . Chem. Mater. 22, 5912–5917 (2010).

Mokkelbost, T. et al. High-temperature proton-conducting lanthanum ortho-niobate-based materials. Part II: Sintering properties and solubility of alkaline earth oxides. J. Amer. Ceram. Soc. 91, 879–886 (2008).

Ivanova, M. E. et al. Functional properties of La0.99X0.01Nb0.99Al0.01O4-δ and La0.99X0.01Nb0.99Ti0.01O4-δ proton conductors where X is an alkaline earth cation. J. Eur. Ceram. Soc. 35, 1239–1253 (2015).

Huse, M., Norby, T. & Haugsrud, R. Proton conductivity in acceptor-doped LaVO4 . J. Electrochem. Soc. 158 (2011).

Ivanova, M. et al. In Doping: Properties, Mechanisms and Applications 221–276 (2013).

Escolastico, S., Vert, V. B. & Serra, J. M. Preparation and Characterization of Nanocrystalline Mixed Proton-Electronic Conducting Materials Based on the System Ln6WO12 . Chem. Mater. 21, 3079–3089 (2009).

Escolastico, S., Solis, C. & Serra, J. M. Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12 . Int J Hydrogen Energ 36, 11946–11954 (2011).

Escolastico, S., Solis, C. & Serra, J. M. Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes. Solid State Ionics 216, 31–35 (2012).

Escolastico, S., Somacescu, S. & Serra, J. M. Tailoring mixed ionic-electronic conduction in H2 permeable membranes based on the system Nd5.5W1-xMoxO11.25-σ . J. Mater. Chem. A 3, 719–731 (2015).

Escolastico, S., Somacescu, S. & Serra, J. M. Solid State Transport and Hydrogen Permeation in the System Nd5.5W1-xRexO11.25-δ . Chem. Mater. 26, 982–992 (2014).

Matsumoto, H. et al. Protonic-electronic mixed conduction and hydrogen permeation in BaCe0.9-xY0.1RuxO3-α . J. Electrochem. Soc. 152 (2005).

Cai, M. et al. Preparation and hydrogen permeation of BaCe0.95Nd0.05O3-δ membranes. J. Memb. Sci. 343, 90–96 (2009).

Escolastico, S. et al. Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ . RSC Adv. 2, 4932–4943 (2012).

Cheng, S. G., Gupta, V. K. & Lin, J. Y. S. Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics 176, 2653–2662 (2005).

Qi, X. W. & Lin, Y. S. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes. Solid State Ionics 130, 149–156 (2000).

Kniep, J. & Lin, Y. S. Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Ind. Eng. Chem. Res. 49, 2768–2774 (2010).

Wei, X., Kniep, J. & Lin, Y. S. Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. J. Memb. Sci. 345, 201–206 (2009).

Zhan, S. et al. Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes. J. Memb. Sci. 340, 241–248 (2009).

Hamakawa, S., Li, L., Li, A. & Iglesia, E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films. Solid State Ionics 148, 71–81 (2002).

Song, S. J., Wachsman, E. D., Rhodes, J., Dorris, S. E. & Balachandran, U. Hydrogen permeability of SrCe1-xMxO3-δ (x = 0.05, M = Eu, Sm). Solid State Ionics 167, 99–105 (2004).

Liang, J., Mao, L., Li, L. & Yuan, W. Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ (0 < = x < = 0.40) Membrane. Chinese J. Chem.Eng. 18, 506–510 (2010).

Xing, W. et al. Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3-δ membranes (Ln = Tm and Yb). J. Memb. Sci. 473, 327–332 (2015).

Oh, T., Yoon, H., Li, J. & Wachsman, E. D. Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes. J. Memb. Sci. 345, 1–4 (2009).

Meng, X. et al. Ni-BaCe0.95Tb0.05O3-δ cermet membranes for hydrogen permeation. J. Memb. Sci. 401, 300–305 (2012).

Kim, H. et al. Microstructural adjustment of Ni–BaCe0.9Y0.1O3−δ cermet membrane for improved hydrogen permeation. Ceram. Int. 40, 4117–4126 (2014).

Song, S. J., Moon, J. H., Lee, T. H., Dorris, S. E. & Balachandran, U. Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ . Solid State Ionics 179, 1854–1857 (2008).

Wei, Y. et al. Enhanced stability of Zr-doped Ba(CeTb)O3-δ-Ni cermet membrane for hydrogen separation. Chem. Comm. 51, 11619–11621 (2015).

Zuo, C., Dorris, S. E., Balachandran, U. & Liu, M. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-α mixed protonic-electronic conductor. Chem. Mater. 18, 4647–4650 (2006).

Fang, S., Brinkman, K. S. & Chen, F. Hydrogen permeability and chemical stability of Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ membrane in concentrated H2O and CO2 . J. Memb. Sci. 467, 85–92 (2014).

Fang, S. et al. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Phys. Chem. C 114, 10986–10991 (2010).

Balachandran, U. et al. Dense cermet membranes for hydrogen separation. Sep. Purif. Technol. 121, 54–59 (2014).

Escolastico, S., Solis, C., Kjolseth, C. & Serra, J. M. Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes. Energ Environ Sci 7, 3736–3746 (2014).

Elangovan, S., Nair, B. G. & Small, T. A. Ceramic mixed protonic/electronic conducting membranes for hydrogen separation. (2007).

Rosensteel, W. A., Ricote, S. & Sullivan, N. P. Hydrogen permeation through dense BaCe0.8Y0.2O3-δ - Ce0.8Y0.2O2-δ composite-ceramic hydrogen separation membranes. Int J Hydrogen Energ 41, 2598–2606 (2016).

Rebollo, E. et al. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y- or Gd-doped ceria. Energ Environ Sci 8, 3675–3686 (2015).

Fish, J. S., Ricote, S., O’Hayre, R. & Bonanos, N. Electrical properties and flux performance of composite ceramic hydrogen separation membranes. J. Mater. Chem. A 3, 5392–5401 (2015).

Unemoto, A. et al. Hydrogen permeability and electrical properties in oxide composites. Solid State Ionics 178, 1663–1667 (2008).

Scholten, M. J., Schoonman, J., Vanmiltenburg, J. C. & Oonk, H. A. J. Synthesis of Strontium and Barium Cerate and Their Reaction with Carbon-Dioxide. Solid State Ionics 61, 83–91 (1993).

Dauter, J., Maffei, N., Bhella, S. S. & Thangadurai, V. Studies on Chemical Stability and Electrical Properties of Proton Conducting Perovskite-Like Doped BaCeO3 . J. Electrochem. Soc. 157, B1413–B1418 (2010).

Brandao, A. et al. Guidelines for improving resistance to CO2 of materials for solid state electrochemical systems. Solid State Ionics 192, 16–20 (2011).

Matsumoto, H., Shimura, T., Yogo, T., Iwahara, H. & Katahira, K. (Google Patents, 2003).

Ricote, S., Manerbino, A., Sullivan, N. P. & Coors, W. G. Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3−δ–Ce0.8Y0.1M0.1O2−δ (M = Y, Yb, Er, Eu). J Mater Sci 49, 4332–4340 (2014).

Medvedev, D. et al. Structural, thermomechanical and electrical properties of new (1 – x)Ce0.8Nd0.2O2−δ–xBaCe0.8Nd0.2O3−δ composites. J. Power Sources 267, 269–279 (2014).

Huang, J., Zhang, L., Wang, C. & Zhang, P. CYO–BZCYO composites with enhanced proton conductivity: Candidate electrolytes for low-temperature solid oxide fuel cells. Int J Hydrogen Energ 37, 13044–13052 (2012).

Ryu, K. H. & Haile, S. M. Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics 125, 355–367 (1999).

Matskevich, N. I. & Wolf, T. A. The enthalpies of formation of BaCe1-xRExO3-δ (RE = Eu, Tb, Gd). J. Chem. Thermodyn. 42, 225–228 (2010).

Amsif, M. et al. Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J. Power Sources 196, 3461–3469 (2011).

Bonanos, N., Ellis, B., Knight, K. S. & Mahmood, M. N. Ionic-conductivity of gadolinium-doped barium cerate perovskites. Solid State Ionics 35, 179–188 (1989).

Wachsman, E. D. & Jiang, N. Ionic conductor useful as hydrogen gas permeation membrane or electrode material comprises a perovskite-type oxide. EP1048613-A1; CA2307005-A1; US2001001379-A1; US6296687-B2; EP1048613-B1; DE60020772-E; DE60020772-T2; CA2307005-C.

Radojkovic, A. et al. Structural and electrical properties of BaCe0.9Eu0.1O2.95 electrolyte for IT-SOFCs. Electrochimica Acta 161, 153–158 (2015).

Kim, D.-J. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. J. Amer. Ceram. Soc. 72, 1415–1421 (1989).

Guan, X., Zhou, H., Wang, Y. & Zhang, J. Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J. Alloy. Compd. 464, 310–316 (2008).

Wang, S. R., Kobayashi, T., Dokiya, M. & Hashimoto, T. Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147, 3606–3609 (2000).

Balaguer, M., Solis, C., Roitsch, S. & Serra, J. M. Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-δ + Co 2 mol%. Dalton Transactions 43, 4305–4312 (2014).

Escolastico, S., Schroeder, M. & Serra, J. M. Optimization of the mixed protonic-electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25-δ . J. Mater. Chem. A 2, 6616–6630 (2014).

Balaguer, M., Solis, C. & Serra, J. M. Structural-Transport Properties Relationships on Ce1-xLnxO2-δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. J. Phys. Chem. C 116, 7975–7982 (2012).

Escolástico, S., Kjølseth, C. & Serra, J. M. Catalytic activation of ceramic H2 membranes for CMR processes. J. Memb. Sci. 517, 57–63 (2016).

Escolastico, S. & Serra, J. M. Nd5.5W1-xUxO11.25-δ system: Electrochemical characterization and hydrogen permeation study. J. Memb. Sci. 489, 112–118 (2015).


This item appears in the following Collection(s)

Show full item record