- -

Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ivanova, Mariya E. es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Balaguer Ramírez, María es_ES
dc.contributor.author Palisaitis, Justinas es_ES
dc.contributor.author Sohn, Yoo Jung es_ES
dc.contributor.author Meulenber, Wilhelm A. es_ES
dc.contributor.author Guillon, Olivier es_ES
dc.contributor.author Mayer, Joachim es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2017-05-26T10:19:01Z
dc.date.available 2017-05-26T10:19:01Z
dc.date.issued 2016-11-04
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/81816
dc.description.abstract [EN] Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H-2 separation membranes at elevated temperature (400-800 degrees C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta revealed unprecedented H-2 permeation levels of 0.4 to 0.61 mL center dot min(-1)center dot cm(-2) at 700 degrees C measured on 500 mu m-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-delta phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H-2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta represents a very promising candidate for H-2 separating membrane in energy-and environmentally-related applications es_ES
dc.description.sponsorship This work has been conducted with the financial support by the Helmholtz Association under the Research Programme Energy Efficiency, Materials and Resources. Financial funding from the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) is also gratefully acknowledged. ZEA-3 at FZJ is gratefully acknowledged for performing the ICP-OES analysis. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stronium cerate membranes es_ES
dc.subject Proton-conducting oxides es_ES
dc.subject GD-Doped ceria es_ES
dc.subject Electrical-properties es_ES
dc.subject Chemical-stability es_ES
dc.subject Ceramic membranes es_ES
dc.subject Permeation properties es_ES
dc.subject Transport-properties es_ES
dc.subject H-2/CO2 Separation es_ES
dc.subject Ionic-conductivity es_ES
dc.title Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep34773
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Ivanova, ME.; Escolástico Rozalén, S.; Balaguer Ramírez, M.; Palisaitis, J.; Sohn, YJ.; Meulenber, WA.; Guillon, O.... (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-delta:Ce0.8Y0.2O2-delta at intermediate temperatures. Scientific Reports. 6:1-14. https://doi.org/10.1038/srep34773 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep34773 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 331682 es_ES
dc.identifier.pmid 27812011 en_EN
dc.identifier.pmcid PMC5095711
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.description.references Meulenberg, W. A., Ivanova, M. E., Serra, J. M. & Roitsch, S. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 541–567 (2011). es_ES
dc.description.references Sørensen, B. Hydrogen and Fuel Cells. (2012). es_ES
dc.description.references Dincer, I. & Zamfirescu, C. Advanced Power Generation Systems (2014). es_ES
dc.description.references Drioli, E., Stankiewicz, A. I. & Macedonio, F. Membrane engineering in process intensification-An overview. J. Memb. Sci. 380, 1–8 (2011). es_ES
dc.description.references Franz, J. & Scherer, V. Impact of ceramic membranes for CO2 separation on IGCC power plant performance. Energy Procedia 4, 645–652 (2011). es_ES
dc.description.references Higman, C. & van der Burgt, M. In Gasification (Second Edition) 91–191 (Gulf Professional Publishing, 2008). es_ES
dc.description.references van Holt, D. et al. Ceramic materials for H2 transport membranes applicable for gas separation under coal-gasification-related conditions. J. Eur. Cer. Soc. 34, 2381–2389 (2014). es_ES
dc.description.references Stoukides, M. Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook. Catal. Rev. - Science and Engineering 42, 1–70 (2000). es_ES
dc.description.references Marnellos, G., Zisekas, S. & Stoukides, M. Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors. J. Catal. 193, 80–87 (2000). es_ES
dc.description.references Kjølseth, C. & Vestre, P. C. Proton conducting membrane (2011). es_ES
dc.description.references Escolastico, S., Solis, C., Scherb, T., Schumacher, G. & Serra, J. M. Hydrogen separation in La5.5WO11.25δ membranes. J. Memb. Sci. 444, 276–284 (2013). es_ES
dc.description.references Basile, A., Gallucci, F. & Tosti, S. In Membrane Science and Technology Vol. 13, 255–323 (2008). es_ES
dc.description.references Franz, J. & Scherer, V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J. Memb. Sci. 359, 173–183 (2010). es_ES
dc.description.references Wang, N., Mundstock, A., Liu, Y., Huang, A. & Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 124, 27–36 (2015). es_ES
dc.description.references Wang, N. et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J. Mater. Chem. A 3, 4722–4728 (2015). es_ES
dc.description.references Korelskiy, D. et al. Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3, 12500–12506 (2015). es_ES
dc.description.references Ngamou, P. H. T. et al. Tailoring the structure and gas permeation properties of silica membranes via binary metal oxides doping. RSC Adv. 5, 82717–82725 (2015). es_ES
dc.description.references Van Gestel, T., Sebold, D., Hauler, F., Meulenberg, W. A. & Buchkremer, H.-P. Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: Evaluation of SiO2, ZrO2, Y2O3–ZrO2 and TiO2–ZrO2 sol–gel membranes. J. Memb. Sci. 359, 64–79 (2010). es_ES
dc.description.references Kreuer, K. D. In Annual Review of Materials Research Vol. 33, 333–359 (2003). es_ES
dc.description.references Medvedev, D. et al. BaCeO3: Materials development, properties and application. Prog. Mater. Sci. 60, 72–129 (2014). es_ES
dc.description.references Shimura, T., Fujimoto, S. & Iwahara, H. Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics 143, 117–123 (2001). es_ES
dc.description.references Meulenberg, W. A. et al. (US Patent App. 13/810,296, 2011). es_ES
dc.description.references Haugsrud, R. Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er). Solid State Ionics 178, 555–560 (2007). es_ES
dc.description.references Seeger, J. et al. Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6-xWO12-y . Inorg Chem 52, 10375–10386 (2013). es_ES
dc.description.references Escolastico, S. et al. Enhanced H2 separation through mixed proton-electron conducting membranes based on La5.5W0.8M0.2O11.25-δ . ChemSusChem 6, 1523–1532 (2013). es_ES
dc.description.references Deibert, W., Ivanova, M. E., Meulenberg, W. A., Vaßen, R. & Guillon, O. Preparation and sintering behaviour of La5.4WO12-δ asymmetric membranes with optimised microstructure for hydrogen separation. J. Memb. Sci. 492, 439–451 (2015). es_ES
dc.description.references Phair, J. W. & Badwal, S. P. S. Review of proton conductors for hydrogen separation. Ionics 12, 103–115 (2006). es_ES
dc.description.references Haugsrud, R. & Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5, 193–196 (2006). es_ES
dc.description.references Mather, G. C., Fisher, C. A. J. & Islam, M. S. Defects, dopants, and protons in LaNbO4 . Chem. Mater. 22, 5912–5917 (2010). es_ES
dc.description.references Mokkelbost, T. et al. High-temperature proton-conducting lanthanum ortho-niobate-based materials. Part II: Sintering properties and solubility of alkaline earth oxides. J. Amer. Ceram. Soc. 91, 879–886 (2008). es_ES
dc.description.references Ivanova, M. E. et al. Functional properties of La0.99X0.01Nb0.99Al0.01O4-δ and La0.99X0.01Nb0.99Ti0.01O4-δ proton conductors where X is an alkaline earth cation. J. Eur. Ceram. Soc. 35, 1239–1253 (2015). es_ES
dc.description.references Huse, M., Norby, T. & Haugsrud, R. Proton conductivity in acceptor-doped LaVO4 . J. Electrochem. Soc. 158 (2011). es_ES
dc.description.references Ivanova, M. et al. In Doping: Properties, Mechanisms and Applications 221–276 (2013). es_ES
dc.description.references Escolastico, S., Vert, V. B. & Serra, J. M. Preparation and Characterization of Nanocrystalline Mixed Proton-Electronic Conducting Materials Based on the System Ln6WO12 . Chem. Mater. 21, 3079–3089 (2009). es_ES
dc.description.references Escolastico, S., Solis, C. & Serra, J. M. Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12 . Int J Hydrogen Energ 36, 11946–11954 (2011). es_ES
dc.description.references Escolastico, S., Solis, C. & Serra, J. M. Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes. Solid State Ionics 216, 31–35 (2012). es_ES
dc.description.references Escolastico, S., Somacescu, S. & Serra, J. M. Tailoring mixed ionic-electronic conduction in H2 permeable membranes based on the system Nd5.5W1-xMoxO11.25-σ . J. Mater. Chem. A 3, 719–731 (2015). es_ES
dc.description.references Escolastico, S., Somacescu, S. & Serra, J. M. Solid State Transport and Hydrogen Permeation in the System Nd5.5W1-xRexO11.25-δ . Chem. Mater. 26, 982–992 (2014). es_ES
dc.description.references Matsumoto, H. et al. Protonic-electronic mixed conduction and hydrogen permeation in BaCe0.9-xY0.1RuxO3-α . J. Electrochem. Soc. 152 (2005). es_ES
dc.description.references Cai, M. et al. Preparation and hydrogen permeation of BaCe0.95Nd0.05O3-δ membranes. J. Memb. Sci. 343, 90–96 (2009). es_ES
dc.description.references Escolastico, S. et al. Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ . RSC Adv. 2, 4932–4943 (2012). es_ES
dc.description.references Cheng, S. G., Gupta, V. K. & Lin, J. Y. S. Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics 176, 2653–2662 (2005). es_ES
dc.description.references Qi, X. W. & Lin, Y. S. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes. Solid State Ionics 130, 149–156 (2000). es_ES
dc.description.references Kniep, J. & Lin, Y. S. Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Ind. Eng. Chem. Res. 49, 2768–2774 (2010). es_ES
dc.description.references Wei, X., Kniep, J. & Lin, Y. S. Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. J. Memb. Sci. 345, 201–206 (2009). es_ES
dc.description.references Zhan, S. et al. Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes. J. Memb. Sci. 340, 241–248 (2009). es_ES
dc.description.references Hamakawa, S., Li, L., Li, A. & Iglesia, E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films. Solid State Ionics 148, 71–81 (2002). es_ES
dc.description.references Song, S. J., Wachsman, E. D., Rhodes, J., Dorris, S. E. & Balachandran, U. Hydrogen permeability of SrCe1-xMxO3-δ (x = 0.05, M = Eu, Sm). Solid State Ionics 167, 99–105 (2004). es_ES
dc.description.references Liang, J., Mao, L., Li, L. & Yuan, W. Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ (0 < = x < = 0.40) Membrane. Chinese J. Chem.Eng. 18, 506–510 (2010). es_ES
dc.description.references Xing, W. et al. Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3-δ membranes (Ln = Tm and Yb). J. Memb. Sci. 473, 327–332 (2015). es_ES
dc.description.references Oh, T., Yoon, H., Li, J. & Wachsman, E. D. Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes. J. Memb. Sci. 345, 1–4 (2009). es_ES
dc.description.references Meng, X. et al. Ni-BaCe0.95Tb0.05O3-δ cermet membranes for hydrogen permeation. J. Memb. Sci. 401, 300–305 (2012). es_ES
dc.description.references Kim, H. et al. Microstructural adjustment of Ni–BaCe0.9Y0.1O3−δ cermet membrane for improved hydrogen permeation. Ceram. Int. 40, 4117–4126 (2014). es_ES
dc.description.references Song, S. J., Moon, J. H., Lee, T. H., Dorris, S. E. & Balachandran, U. Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ . Solid State Ionics 179, 1854–1857 (2008). es_ES
dc.description.references Wei, Y. et al. Enhanced stability of Zr-doped Ba(CeTb)O3-δ-Ni cermet membrane for hydrogen separation. Chem. Comm. 51, 11619–11621 (2015). es_ES
dc.description.references Zuo, C., Dorris, S. E., Balachandran, U. & Liu, M. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-α mixed protonic-electronic conductor. Chem. Mater. 18, 4647–4650 (2006). es_ES
dc.description.references Fang, S., Brinkman, K. S. & Chen, F. Hydrogen permeability and chemical stability of Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ membrane in concentrated H2O and CO2 . J. Memb. Sci. 467, 85–92 (2014). es_ES
dc.description.references Fang, S. et al. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Phys. Chem. C 114, 10986–10991 (2010). es_ES
dc.description.references Balachandran, U. et al. Dense cermet membranes for hydrogen separation. Sep. Purif. Technol. 121, 54–59 (2014). es_ES
dc.description.references Escolastico, S., Solis, C., Kjolseth, C. & Serra, J. M. Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes. Energ Environ Sci 7, 3736–3746 (2014). es_ES
dc.description.references Elangovan, S., Nair, B. G. & Small, T. A. Ceramic mixed protonic/electronic conducting membranes for hydrogen separation. (2007). es_ES
dc.description.references Rosensteel, W. A., Ricote, S. & Sullivan, N. P. Hydrogen permeation through dense BaCe0.8Y0.2O3-δ - Ce0.8Y0.2O2-δ composite-ceramic hydrogen separation membranes. Int J Hydrogen Energ 41, 2598–2606 (2016). es_ES
dc.description.references Rebollo, E. et al. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y- or Gd-doped ceria. Energ Environ Sci 8, 3675–3686 (2015). es_ES
dc.description.references Fish, J. S., Ricote, S., O’Hayre, R. & Bonanos, N. Electrical properties and flux performance of composite ceramic hydrogen separation membranes. J. Mater. Chem. A 3, 5392–5401 (2015). es_ES
dc.description.references Unemoto, A. et al. Hydrogen permeability and electrical properties in oxide composites. Solid State Ionics 178, 1663–1667 (2008). es_ES
dc.description.references Scholten, M. J., Schoonman, J., Vanmiltenburg, J. C. & Oonk, H. A. J. Synthesis of Strontium and Barium Cerate and Their Reaction with Carbon-Dioxide. Solid State Ionics 61, 83–91 (1993). es_ES
dc.description.references Dauter, J., Maffei, N., Bhella, S. S. & Thangadurai, V. Studies on Chemical Stability and Electrical Properties of Proton Conducting Perovskite-Like Doped BaCeO3 . J. Electrochem. Soc. 157, B1413–B1418 (2010). es_ES
dc.description.references Brandao, A. et al. Guidelines for improving resistance to CO2 of materials for solid state electrochemical systems. Solid State Ionics 192, 16–20 (2011). es_ES
dc.description.references Matsumoto, H., Shimura, T., Yogo, T., Iwahara, H. & Katahira, K. (Google Patents, 2003). es_ES
dc.description.references Ricote, S., Manerbino, A., Sullivan, N. P. & Coors, W. G. Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3−δ–Ce0.8Y0.1M0.1O2−δ (M = Y, Yb, Er, Eu). J Mater Sci 49, 4332–4340 (2014). es_ES
dc.description.references Medvedev, D. et al. Structural, thermomechanical and electrical properties of new (1 – x)Ce0.8Nd0.2O2−δ–xBaCe0.8Nd0.2O3−δ composites. J. Power Sources 267, 269–279 (2014). es_ES
dc.description.references Huang, J., Zhang, L., Wang, C. & Zhang, P. CYO–BZCYO composites with enhanced proton conductivity: Candidate electrolytes for low-temperature solid oxide fuel cells. Int J Hydrogen Energ 37, 13044–13052 (2012). es_ES
dc.description.references Ryu, K. H. & Haile, S. M. Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics 125, 355–367 (1999). es_ES
dc.description.references Matskevich, N. I. & Wolf, T. A. The enthalpies of formation of BaCe1-xRExO3-δ (RE = Eu, Tb, Gd). J. Chem. Thermodyn. 42, 225–228 (2010). es_ES
dc.description.references Amsif, M. et al. Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J. Power Sources 196, 3461–3469 (2011). es_ES
dc.description.references Bonanos, N., Ellis, B., Knight, K. S. & Mahmood, M. N. Ionic-conductivity of gadolinium-doped barium cerate perovskites. Solid State Ionics 35, 179–188 (1989). es_ES
dc.description.references Wachsman, E. D. & Jiang, N. Ionic conductor useful as hydrogen gas permeation membrane or electrode material comprises a perovskite-type oxide. EP1048613-A1; CA2307005-A1; US2001001379-A1; US6296687-B2; EP1048613-B1; DE60020772-E; DE60020772-T2; CA2307005-C. es_ES
dc.description.references Radojkovic, A. et al. Structural and electrical properties of BaCe0.9Eu0.1O2.95 electrolyte for IT-SOFCs. Electrochimica Acta 161, 153–158 (2015). es_ES
dc.description.references Kim, D.-J. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. J. Amer. Ceram. Soc. 72, 1415–1421 (1989). es_ES
dc.description.references Guan, X., Zhou, H., Wang, Y. & Zhang, J. Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J. Alloy. Compd. 464, 310–316 (2008). es_ES
dc.description.references Wang, S. R., Kobayashi, T., Dokiya, M. & Hashimoto, T. Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147, 3606–3609 (2000). es_ES
dc.description.references Balaguer, M., Solis, C., Roitsch, S. & Serra, J. M. Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-δ + Co 2 mol%. Dalton Transactions 43, 4305–4312 (2014). es_ES
dc.description.references Escolastico, S., Schroeder, M. & Serra, J. M. Optimization of the mixed protonic-electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25-δ . J. Mater. Chem. A 2, 6616–6630 (2014). es_ES
dc.description.references Balaguer, M., Solis, C. & Serra, J. M. Structural-Transport Properties Relationships on Ce1-xLnxO2-δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. J. Phys. Chem. C 116, 7975–7982 (2012). es_ES
dc.description.references Escolástico, S., Kjølseth, C. & Serra, J. M. Catalytic activation of ceramic H2 membranes for CMR processes. J. Memb. Sci. 517, 57–63 (2016). es_ES
dc.description.references Escolastico, S. & Serra, J. M. Nd5.5W1-xUxO11.25-δ system: Electrochemical characterization and hydrogen permeation study. J. Memb. Sci. 489, 112–118 (2015). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem