- -

Effect of the C-alpha substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of the C-alpha substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy

Show full item record

Oliver-Tomás, B.; Gonell-Gómez, F.; Pulido, A.; Renz, M.; Boronat Zaragoza, M. (2016). Effect of the C-alpha substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy. Catalysis Science and Technology. 6(14):5561-5566. doi:10.1039/c6cy00395h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81820

Files in this item

Item Metadata

Title: Effect of the C-alpha substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] The kinetics of the ketonic decarboxylation of linear and branched carboxylic acids over m-ZrO2 as a catalyst has been investigated. The same apparent activation energy is experimentally determined for the ketonic ...[+]
Subjects: Catalytic ketonization , Acetic-acid , Chemical , Biomass , Condensation , Mechanism , Zirconia , Oxides , Fuels
Copyrigths: Reserva de todos los derechos
Source:
Catalysis Science and Technology. (issn: 2044-4753 ) (eissn: 2044-4761 )
DOI: 10.1039/c6cy00395h
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c6cy00395h
Thanks:
The authors thank MINECO (Consolider Ingenio 2010-MULTICAT, CSD2009-00050 and Severo Ochoa program, SEV-2012-0267), Generalitat Valenciana (PROMETEOII/2013/011 Project), and the Spanish National Research Council (CSIC, Es ...[+]
Type: Artículo

References

Friedel, C. (1858). Ueber s. g. gemischte Acetone. Annalen der Chemie und Pharmacie, 108(1), 122-125. doi:10.1002/jlac.18581080124

W. L. Howard , in Encyclopedia of Chemical Technology (Kirk-Othmer), Wiley-Interscience, New York, 4th edn, 1998, vol. 1, pp. 176–194

H. Siegel and M.Eggersdorfer, Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1990 [+]
Friedel, C. (1858). Ueber s. g. gemischte Acetone. Annalen der Chemie und Pharmacie, 108(1), 122-125. doi:10.1002/jlac.18581080124

W. L. Howard , in Encyclopedia of Chemical Technology (Kirk-Othmer), Wiley-Interscience, New York, 4th edn, 1998, vol. 1, pp. 176–194

H. Siegel and M.Eggersdorfer, Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1990

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274

Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546

Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103

Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h

Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j

Corma, A., Oliver-Tomas, B., Renz, M., & Simakova, I. L. (2014). Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. Journal of Molecular Catalysis A: Chemical, 388-389, 116-122. doi:10.1016/j.molcata.2013.11.015

Rajadurai, S. (1994). Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides. Catalysis Reviews, 36(3), 385-403. doi:10.1080/01614949408009466

Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128(2), 209-217. doi:10.1016/0926-860x(95)00082-8

Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624

Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8

Hendren, T. S., & Dooley, K. M. (2003). Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones. Catalysis Today, 85(2-4), 333-351. doi:10.1016/s0920-5861(03)00399-7

Martinez, R. (2004). Ketonization of acetic acid on titania-functionalized silica monoliths. Journal of Catalysis, 222(2), 404-409. doi:10.1016/j.jcat.2003.12.002

Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419

Ignatchenko, A. V., DeRaddo, J. S., Marino, V. J., & Mercado, A. (2015). Cross-selectivity in the catalytic ketonization of carboxylic acids. Applied Catalysis A: General, 498, 10-24. doi:10.1016/j.apcata.2015.03.017

Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989

Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h

Jackson, M. A., & Cermak, S. C. (2012). Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al. Applied Catalysis A: General, 431-432, 157-163. doi:10.1016/j.apcata.2012.04.034

Plint, N. ., Coville, N. ., Lack, D., Nattrass, G. ., & Vallay, T. (2001). The catalysed synthesis of symmetrical ketones from alcohols. Journal of Molecular Catalysis A: Chemical, 165(1-2), 275-281. doi:10.1016/s1381-1169(00)00445-3

Randery, S. (2002). Cerium oxide-based catalysts for production of ketones by acid condensation. Applied Catalysis A: General, 226(1-2), 265-280. doi:10.1016/s0926-860x(01)00912-7

[-]

This item appears in the following Collection(s)

Show full item record