- -

On the fixed point theory of soft metric spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the fixed point theory of soft metric spaces

Show full item record

Abbas, M.; Murtaza, G.; Romaguera Bonilla, S. (2016). On the fixed point theory of soft metric spaces. Fixed Point Theory and Applications. 2016(17):1-11. doi:10.1186/s13663-016-0502-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81911

Files in this item

Item Metadata

Title: On the fixed point theory of soft metric spaces
Author: Abbas, Mujahid Murtaza, Ghulam Romaguera Bonilla, Salvador
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
[EN] The aim of this paper is to show that a soft metric induces a compatible metric on the collection of all soft points of the absolute soft set, when the set of parameters is a finite set. We then show that soft metric ...[+]
Subjects: Soft mapping , Soft metric space , Soft contraction , Soft Caristi mapping
Copyrigths: Reconocimiento (by)
Source:
Fixed Point Theory and Applications. (issn: 1687-1812 )
DOI: 10.1186/s13663-016-0502-y
Publisher:
SpringerOpen
Publisher version: http://dx.doi.org/10.1186/s13663-016-0502-y
Thanks:
Salvador Romaguera thanks the support of Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01.
Type: Artículo

References

Zadeh, LA: Fuzzy sets. Inf. Control 8, 103-112 (1965)

Molodtsov, D: Soft set theory - first results. Comput. Math. Appl. 37, 19-31 (1999)

Aktaş, H, Çağman, N: Soft sets and soft groups. Inf. Sci. 177, 2726-2735 (2007) [+]
Zadeh, LA: Fuzzy sets. Inf. Control 8, 103-112 (1965)

Molodtsov, D: Soft set theory - first results. Comput. Math. Appl. 37, 19-31 (1999)

Aktaş, H, Çağman, N: Soft sets and soft groups. Inf. Sci. 177, 2726-2735 (2007)

Ali, MI, Feng, F, Liu, X, Min, WK, Shabir, M: On some new operations in soft set theory. Comput. Math. Appl. 57, 1547-1553 (2009)

Feng, F, Liu, X, Leoreanu-Fotea, V, Jun, YB: Soft sets and soft rough sets. Inf. Sci. 181, 1125-1137 (2011)

Jiang, Y, Tang, Y, Chen, Q, Wang, J, Tang, S: Extending soft sets with description logics. Comput. Math. Appl. 59, 2087-2096 (2009)

Jun, YB: Soft BCK/BCI-algebras. Comput. Math. Appl. 56, 1408-1413 (2008)

Jun, YB, Lee, KJ, Khan, A: Soft ordered semigroups. Math. Log. Q. 56, 42-50 (2010)

Jun, YB, Lee, KJ, Park, CH: Soft set theory applied to ideals in d-algebras. Comput. Math. Appl. 57, 367-378 (2009)

Jun, YB, Park, CH: Applications of soft sets in ideal theory of BCK/BCI-algebras. Inf. Sci. 178, 2466-2475 (2008)

Kong, Z, Gao, L, Wang, L, Li, S: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56, 3029-3037 (2008)

Majumdar, P, Samanta, SK: Generalized fuzzy soft sets. Comput. Math. Appl. 59, 1425-1432 (2010)

Li, F: Notes on the soft operations. ARPN J. Syst. Softw. 1, 205-208 (2011)

Maji, PK, Roy, AR, Biswas, R: An application of soft sets in a decision making problem. Comput. Math. Appl. 44, 1077-1083 (2002)

Qin, K, Hong, Z: On soft equality. J. Comput. Appl. Math. 234, 1347-1355 (2010)

Xiao, Z, Gong, K, Xia, S, Zou, Y: Exclusive disjunctive soft sets. Comput. Math. Appl. 59, 2128-2137 (2009)

Xiao, Z, Gong, K, Zou, Y: A combined forecasting approach based on fuzzy soft sets. J. Comput. Appl. Math. 228, 326-333 (2009)

Xu, W, Ma, J, Wang, S, Hao, G: Vague soft sets and their properties. Comput. Math. Appl. 59, 787-794 (2010)

Yang, CF: A note on soft set theory. Comput. Math. Appl. 56, 1899-1900 (2008)

Yang, X, Lin, TY, Yang, J, Li, Y, Yu, D: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58, 521-527 (2009)

Zhu, P, Wen, Q: Operations on soft sets revisited (2012). arXiv:1205.2857v1

Feng, F, Jun, YB, Liu, XY, Li, LF: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234, 10-20 (2009)

Feng, F, Jun, YB, Zhao, X: Soft semirings. Comput. Math. Appl. 56, 2621-2628 (2008)

Feng, F, Liu, X: Soft rough sets with applications to demand analysis. In: Int. Workshop Intell. Syst. Appl. (ISA 2009), pp. 1-4. (2009)

Herawan, T, Deris, MM: On multi-soft sets construction in information systems. In: Emerging Intelligent Computing Technology and Applications with Aspects of Artificial Intelligence, pp. 101-110. Springer, Berlin (2009)

Herawan, T, Rose, ANM, Deris, MM: Soft set theoretic approach for dimensionality reduction. In: Database Theory and Application, pp. 171-178. Springer, Berlin (2009)

Kim, YK, Min, WK: Full soft sets and full soft decision systems. J. Intell. Fuzzy Syst. 26, 925-933 (2014). doi: 10.3233/IFS-130783

Mushrif, MM, Sengupta, S, Ray, AK: Texture classification using a novel, soft-set theory based classification algorithm. Lect. Notes Comput. Sci. 3851, 246-254 (2006)

Roy, AR, Maji, PK: A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 203, 412-418 (2007)

Zhu, P, Wen, Q: Probabilistic soft sets. In: IEEE Conference on Granular Computing (GrC 2010), pp. 635-638 (2010)

Zou, Y, Xiao, Z: Data analysis approaches of soft sets under incomplete information. Knowl.-Based Syst. 21, 941-945 (2008)

Cagman, N, Karatas, S, Enginoglu, S: Soft topology. Comput. Math. Appl. 62, 351-358 (2011)

Das, S, Samanta, SK: Soft real sets, soft real numbers and their properties. J. Fuzzy Math. 20, 551-576 (2012)

Das, S, Samanta, SK: Soft metric. Ann. Fuzzy Math. Inform. 6, 77-94 (2013)

Abbas, M, Murtaza, G, Romaguera, S: Soft contraction theorem. J. Nonlinear Convex Anal. 16, 423-435 (2015)

Chen, CM, Lin, IJ: Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space. Fixed Point Theory Appl. 2015, 184 (2015)

Feng, F, Li, CX, Davvaz, B, Ali, MI: Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput. 14, 8999-9911 (2010)

Maji, PK, Biswas, R, Roy, AR: Soft set theory. Comput. Math. Appl. 45, 555-562 (2003)

Wardowski, D: On a soft mapping and its fixed points. Fixed Point Theory Appl. 2013, 182 (2013)

Kannan, R: Some results on fixed points II. Am. Math. Mon. 76, 405-408 (1969)

Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)

Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)

Kirk, WA: Caristi’s fixed-point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976)

[-]

This item appears in the following Collection(s)

Show full item record