- -

On the fixed point theory of soft metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the fixed point theory of soft metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Mujahid es_ES
dc.contributor.author Murtaza, Ghulam es_ES
dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.date.accessioned 2017-05-29T10:21:49Z
dc.date.available 2017-05-29T10:21:49Z
dc.date.issued 2016
dc.identifier.issn 1687-1812
dc.identifier.uri http://hdl.handle.net/10251/81911
dc.description.abstract [EN] The aim of this paper is to show that a soft metric induces a compatible metric on the collection of all soft points of the absolute soft set, when the set of parameters is a finite set. We then show that soft metric extensions of several important fixed point theorems for metric spaces can be directly deduced from comparable existing results. We also present some examples to validate and illustrate our approach. es_ES
dc.description.sponsorship Salvador Romaguera thanks the support of Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01.
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Fixed Point Theory and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Soft mapping es_ES
dc.subject Soft metric space es_ES
dc.subject Soft contraction es_ES
dc.subject Soft Caristi mapping es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the fixed point theory of soft metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13663-016-0502-y
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Abbas, M.; Murtaza, G.; Romaguera Bonilla, S. (2016). On the fixed point theory of soft metric spaces. Fixed Point Theory and Applications. 2016(17):1-11. https://doi.org/10.1186/s13663-016-0502-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s13663-016-0502-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2016 es_ES
dc.description.issue 17 es_ES
dc.relation.senia 316259 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Zadeh, LA: Fuzzy sets. Inf. Control 8, 103-112 (1965) es_ES
dc.description.references Molodtsov, D: Soft set theory - first results. Comput. Math. Appl. 37, 19-31 (1999) es_ES
dc.description.references Aktaş, H, Çağman, N: Soft sets and soft groups. Inf. Sci. 177, 2726-2735 (2007) es_ES
dc.description.references Ali, MI, Feng, F, Liu, X, Min, WK, Shabir, M: On some new operations in soft set theory. Comput. Math. Appl. 57, 1547-1553 (2009) es_ES
dc.description.references Feng, F, Liu, X, Leoreanu-Fotea, V, Jun, YB: Soft sets and soft rough sets. Inf. Sci. 181, 1125-1137 (2011) es_ES
dc.description.references Jiang, Y, Tang, Y, Chen, Q, Wang, J, Tang, S: Extending soft sets with description logics. Comput. Math. Appl. 59, 2087-2096 (2009) es_ES
dc.description.references Jun, YB: Soft BCK/BCI-algebras. Comput. Math. Appl. 56, 1408-1413 (2008) es_ES
dc.description.references Jun, YB, Lee, KJ, Khan, A: Soft ordered semigroups. Math. Log. Q. 56, 42-50 (2010) es_ES
dc.description.references Jun, YB, Lee, KJ, Park, CH: Soft set theory applied to ideals in d-algebras. Comput. Math. Appl. 57, 367-378 (2009) es_ES
dc.description.references Jun, YB, Park, CH: Applications of soft sets in ideal theory of BCK/BCI-algebras. Inf. Sci. 178, 2466-2475 (2008) es_ES
dc.description.references Kong, Z, Gao, L, Wang, L, Li, S: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56, 3029-3037 (2008) es_ES
dc.description.references Majumdar, P, Samanta, SK: Generalized fuzzy soft sets. Comput. Math. Appl. 59, 1425-1432 (2010) es_ES
dc.description.references Li, F: Notes on the soft operations. ARPN J. Syst. Softw. 1, 205-208 (2011) es_ES
dc.description.references Maji, PK, Roy, AR, Biswas, R: An application of soft sets in a decision making problem. Comput. Math. Appl. 44, 1077-1083 (2002) es_ES
dc.description.references Qin, K, Hong, Z: On soft equality. J. Comput. Appl. Math. 234, 1347-1355 (2010) es_ES
dc.description.references Xiao, Z, Gong, K, Xia, S, Zou, Y: Exclusive disjunctive soft sets. Comput. Math. Appl. 59, 2128-2137 (2009) es_ES
dc.description.references Xiao, Z, Gong, K, Zou, Y: A combined forecasting approach based on fuzzy soft sets. J. Comput. Appl. Math. 228, 326-333 (2009) es_ES
dc.description.references Xu, W, Ma, J, Wang, S, Hao, G: Vague soft sets and their properties. Comput. Math. Appl. 59, 787-794 (2010) es_ES
dc.description.references Yang, CF: A note on soft set theory. Comput. Math. Appl. 56, 1899-1900 (2008) es_ES
dc.description.references Yang, X, Lin, TY, Yang, J, Li, Y, Yu, D: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58, 521-527 (2009) es_ES
dc.description.references Zhu, P, Wen, Q: Operations on soft sets revisited (2012). arXiv:1205.2857v1 es_ES
dc.description.references Feng, F, Jun, YB, Liu, XY, Li, LF: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234, 10-20 (2009) es_ES
dc.description.references Feng, F, Jun, YB, Zhao, X: Soft semirings. Comput. Math. Appl. 56, 2621-2628 (2008) es_ES
dc.description.references Feng, F, Liu, X: Soft rough sets with applications to demand analysis. In: Int. Workshop Intell. Syst. Appl. (ISA 2009), pp. 1-4. (2009) es_ES
dc.description.references Herawan, T, Deris, MM: On multi-soft sets construction in information systems. In: Emerging Intelligent Computing Technology and Applications with Aspects of Artificial Intelligence, pp. 101-110. Springer, Berlin (2009) es_ES
dc.description.references Herawan, T, Rose, ANM, Deris, MM: Soft set theoretic approach for dimensionality reduction. In: Database Theory and Application, pp. 171-178. Springer, Berlin (2009) es_ES
dc.description.references Kim, YK, Min, WK: Full soft sets and full soft decision systems. J. Intell. Fuzzy Syst. 26, 925-933 (2014). doi: 10.3233/IFS-130783 es_ES
dc.description.references Mushrif, MM, Sengupta, S, Ray, AK: Texture classification using a novel, soft-set theory based classification algorithm. Lect. Notes Comput. Sci. 3851, 246-254 (2006) es_ES
dc.description.references Roy, AR, Maji, PK: A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 203, 412-418 (2007) es_ES
dc.description.references Zhu, P, Wen, Q: Probabilistic soft sets. In: IEEE Conference on Granular Computing (GrC 2010), pp. 635-638 (2010) es_ES
dc.description.references Zou, Y, Xiao, Z: Data analysis approaches of soft sets under incomplete information. Knowl.-Based Syst. 21, 941-945 (2008) es_ES
dc.description.references Cagman, N, Karatas, S, Enginoglu, S: Soft topology. Comput. Math. Appl. 62, 351-358 (2011) es_ES
dc.description.references Das, S, Samanta, SK: Soft real sets, soft real numbers and their properties. J. Fuzzy Math. 20, 551-576 (2012) es_ES
dc.description.references Das, S, Samanta, SK: Soft metric. Ann. Fuzzy Math. Inform. 6, 77-94 (2013) es_ES
dc.description.references Abbas, M, Murtaza, G, Romaguera, S: Soft contraction theorem. J. Nonlinear Convex Anal. 16, 423-435 (2015) es_ES
dc.description.references Chen, CM, Lin, IJ: Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space. Fixed Point Theory Appl. 2015, 184 (2015) es_ES
dc.description.references Feng, F, Li, CX, Davvaz, B, Ali, MI: Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput. 14, 8999-9911 (2010) es_ES
dc.description.references Maji, PK, Biswas, R, Roy, AR: Soft set theory. Comput. Math. Appl. 45, 555-562 (2003) es_ES
dc.description.references Wardowski, D: On a soft mapping and its fixed points. Fixed Point Theory Appl. 2013, 182 (2013) es_ES
dc.description.references Kannan, R: Some results on fixed points II. Am. Math. Mon. 76, 405-408 (1969) es_ES
dc.description.references Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969) es_ES
dc.description.references Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976) es_ES
dc.description.references Kirk, WA: Caristi’s fixed-point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem