- -

A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization

Show simple item record

Files in this item

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Salvador Rubio, Francisco Javier es_ES
dc.contributor.author Gimeno, Jaime es_ES
dc.contributor.author Venegas Pereira, Óscar Hernando es_ES
dc.date.accessioned 2017-05-31T11:19:15Z
dc.date.available 2017-05-31T11:19:15Z
dc.date.issued 2016-02
dc.identifier.issn 0732-8818
dc.identifier.uri http://hdl.handle.net/10251/82092
dc.description.abstract In this article a technique to match the refractive index (n) of different diesel fuels with the refractive index of transparent materials is presented with the aim to improve the flow visualization inside transparent nozzles. For this purpose, a technique based on the variation of the angle of a laser beam passing through the tested fluid and the transparent material was used. The validation of this technique was performed by measuring the refractive index of known fluids (n-decane and n-hexadecane) and comparing them with literature ones. After this, the refractive index was determined for three different diesel fuels: commercial diesel, a rapeseed methyl ester biodiesel (RME) and cold start diesel. The uncertainty of the measurements represents a relative error respect to the mean of only 0.1%. Next, to equal the refractive index of each fuel with the refractive index of the transparent material (fused silica nozzle), a doping process was performed with 1-methylnaphthalene and n-hexadecane at different concentrations. The main advantage of applying this technique in visualization measurements is to obtain additionally the fuel refractive index and match this with the transparent nozzle under real conditions without requiring additional equipment such as refractometers. es_ES
dc.description.sponsorship The authors would like to thank Jose Enrique del Rey* for his collaboration in the experimental measurements. This work was carried in the frame of the project "Comprension de la influencia de combustibles no convencionales en el proceso de injeccion y combustion tipo Diesel"; reference TRA2012-36932 with the support of the Ministerio de Economia y Competitividad of the Government of Spain. (*) From CMT-Motores Termicos. Universitat Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Ministerio de Economia y Competitividad of the Government of Spain TRA2012-36932 es_ES
dc.relation.ispartof Experimental Techniques es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Refractive Index es_ES
dc.subject Transparent Nozzle es_ES
dc.subject Diesel es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40799-016-0031-y
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Payri, R.; Salvador Rubio, FJ.; Gimeno, J.; Venegas Pereira, OH. (2016). A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization. Experimental Techniques. 40(1):261-269. doi:10.1007/s40799-016-0031-y es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://doi.org/10.1007/s40799-016-0031-y es_ES
dc.description.upvformatpinicio 261 es_ES
dc.description.upvformatpfin 269 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 313902 es_ES
dc.identifier.eissn 1747-1567
dc.relation.references Payri, R., Bermúdez, V., Salvador, F.J., and Plazas, A.H., “Study of the influence of nozzle seat type on injection rate and spray behavior,” Proceedings of the IMechE, Part D: Journal of Automobile Engineering 219: 677–689 (2005). es_ES
dc.relation.references Afzal, H., Arcoumanis, C., Gavaises, M., Kampanis, N., “Internal Flow in Diesel Injector Nozzles: Modelling and Experiments,” Proceedings of IMechE Seminar on Fuel Injection Systems, London, Paper S492/S2/99, 1999. es_ES
dc.relation.references Payri, R., Salvador, F.J., Gimeno, J., de la Morena, J., “Macroscopic Behavior of Diesel Sprays in the Near-Nozzle Field,” Presented at SAE World Congress, 2008-01-0929, 2008. es_ES
dc.relation.references Oda, T.., Goda, Y., Kanaike, S., Aoki, K., Ohsawa, K., “Experimental Study about internal Cavitating Flow and Primary Atomization of a Large-Scaled VCO Diesel Injector with Eccentric Needle,” 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, p. 132 (2009). es_ES
dc.relation.references Chaves H., Knapp M., Kubitzek A., Obermeier F., “Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles,” SAE Paper No. 950290, 1995. es_ES
dc.relation.references Chaves H., Kirmse C., Obermeier F. “The Influence of Nozzle Inlet Curvature on Unsteady Cavitation in Transparent Diesel Injection Nozzles,” 1st International Colloquium on Microhydrodynamics, Paris, 2000. es_ES
dc.relation.references Arcoumanis, C., Badami, M., Flora, H., Gavaises M., “Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles,” SAE Paper 2000-01-1249 (2000). es_ES
dc.relation.references Soteriou, C., Andrews R.J., Smith M., “Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization,” SAE Paper 950080 (1995). es_ES
dc.relation.references Walther J., Schaller J.K., Wirth R., Tropea C., “Investigation of internal flow in transparent diesel injection nozzles using fluorescent particle image velocimetry (FPIV),” Proceedings of ICLASS 2000, 2000. es_ES
dc.relation.references Sou, A., Tomiyama, A., Hosokawa, S., Nigorikawa, S., and Maeda, T., “Cavitation in a Two-Dimensional Nozzle and Liquid Jet Atomization,” JSME International Journal Series B 49: 1253–1259 (2006). es_ES
dc.relation.references Ganippa L.C., Bark G., Andersson S., Chomiak J., “Comparison of cavitation phenomena in transparent scale-up single-hole diesel nozzles,” Proc. CAV2001 A9.005, 2001. es_ES
dc.relation.references Wollenhaupt, M., et al., Tr¨ ager, F., (ed), Springer Handbook of Lasers and Optics, Springer, New York (2007). es_ES
dc.relation.references Ciddor, P.E., “Refractive index of air: new equations for the visible and near infrared,” Applied Optics 35: 1566–1573 (1996). es_ES
dc.relation.references Malitson, H., “Refractive Index of Fused Silica,” Journal of the Optical Society of America 55: 1205 (1965). es_ES
dc.relation.references Bass, M., DeCusatis, C., and Enoch, J., et al., Handbook of Optics, Volume 4, 3rd Edition, McGraw-Hill, New York, (2009). es_ES
dc.relation.references Kuiper, S., Hendriks, B.H.W., Renders, C.A., Patent Aplication Publication, Publication No. 2008/0204890 A1, United States, 2008. es_ES
dc.relation.references Deanesly, R.M., and Carleton, L.T., “Physical Constants of the Normal Paraffin Hydrocarbons,” The Journal of Physical Chemistry 45: 1104–1123 (1941). es_ES
dc.relation.references Ghosh, G., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, Academic, San Diego, CA (1997). es_ES
dc.relation.references Bach, H., and Neuroth, N., The Properties of Optical Glass, Springer, New York (1995). es_ES
dc.relation.references Forziati, A.F., “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” Journal of Research of the National Bureau of Standards 44: 373–385 (1950). es_ES


This item appears in the following Collection(s)

Show simple item record