- -

Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

Mostrar el registro completo del ítem

Catalá-Icardo, M.; Gómez Benito, C.; Simo Alfonso, E.; Herrero Martinez, JM. (2017). Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Analytical and Bioanalytical Chemistry. 409(1):243-250. https://doi.org/10.1007/s00216-016-9993-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82259

Ficheros en el ítem

Metadatos del ítem

Título: Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent
Autor: Catalá-Icardo, Mónica Gómez Benito, Carmen Simo Alfonso, Ernesto Herrero Martinez, Jose Manuel
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase ...[+]
Palabras clave: Azoxystrobin , Chlorothalonil , Gold nanoparticles , Polymer-based material , Solid-phase extraction , HPLC-DAD
Derechos de uso: Reserva de todos los derechos
Fuente:
Analytical and Bioanalytical Chemistry. (issn: 1618-2642 ) (eissn: 1618-2650 )
DOI: 10.1007/s00216-016-9993-y
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00216-016-9993-y
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2014-52765-R/ES/DESARROLLO DE FASES ESTACIONARIAS MONOLITICAS HIBRIDAS POLIMERO-NANOPARTICULAS Y SUS APLICACIONES EN SEPARACION/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F145/ES/Sistemas de separación basados en nuevos polímeros porosos y composites polímero-nanopartículas con aplicaciones industriales y medioambientales/
Agradecimientos:
This work was supported by project CTQ2014-52765-R (Ministerio de Economia y Competitividad (MINECO) of Spain and Fondo Europeo de Desarrollo Regional (FEDER)) and PROMETEO/2016/145 (Conselleria de Educacion, Investigacion, ...[+]
Tipo: Artículo

References

Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31.

Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62.

Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53. [+]
Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31.

Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62.

Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53.

U.S. Environmental Protection Agency (EPA). R.E.D. facts. Prevention, pesticides and toxic substances (4508C) Chlorothalonil; 1999. EPA-738-F-99-008.

Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston Jr DB. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Prot. 2007;26:83–8.

Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem. 2004;52:6361–72.

Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128:236–43.

Leandro CC, Hancock O, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. J Chromatogr A. 2007;1166:152–62.

Ono Y, Yamagami T, Nishina T, Tobino T. Pesticide multiresidue analysis of 303 compounds using supercritical fluid extraction. Anal Sci. 2006;22:1473–6.

Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165:200–12.

Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF, et al. A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc. 2014;25:1520–7.

Słowik-Borowiec M. Validation of a QuEChERS-based gas chromatographic method for multiresidue pesticide analysis in fresh peppermint including studies of matrix effects. Food Anal Methods. 2015;8:1413–24.

El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M, et al. Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem. 2013;93:499–510.

Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, et al. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. 2015;1381:37–47.

Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213.

Żwir-Ferenc A, Biziuk M. Solid phase extraction technique—trends, opportunities and applications. Pol J Environ Stud. 2006;15:677–90.

Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21.

Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767–81.

Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res. 2016;7:9–16.

Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.

Tong S, Liu S, Wang H, Jia Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatographia. 2014;77:5–14.

Lv Y, Maya Alejandro F, Fréchet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121–8.

Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun. 2010;46:2109–11.

Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control. 2014;46:108–14.

Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43.

Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.

Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors Actuators B. 2015;220:216–21.

Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst. 2009;134:80–6.

Zhao L, Zhao F, Zeng B. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24.

Pan Y, Wang X, Zhang H, Kang Y, Wu T, Du Y. Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection. Anal Methods. 2015;7:1349–57.

Zhou X, Zhou F, Liu H, Yang L, Liu J. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst. 2013;138:5832–8.

Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–73.

Lee C, Bae SJ, Gong M, Kim K, Joo S. Surface-enhanced Raman scattering of 4,4′-dicyanobiphenyl on gold and silver nanoparticle surfaces. J Raman Spectrosc. 2002;33:429–33.

International Conference on Harmonization (ICH guidelines). Validation of analytical procedures: text and methodology. ICH-Q2, Geneva; 1996.

Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330/32. 1998.

Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, et al. Regulatory limits for pesticide residues in water (IUPAC technical Report). Pure Appl Chem. 2003;75:1123–55.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem