- -

Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Catalá-Icardo, Mónica es_ES
dc.contributor.author Gómez Benito, Carmen es_ES
dc.contributor.author Simo Alfonso, Ernesto es_ES
dc.contributor.author Herrero Martinez, Jose Manuel es_ES
dc.date.accessioned 2017-06-02T11:20:19Z
dc.date.available 2017-06-02T11:20:19Z
dc.date.issued 2017-01
dc.identifier.issn 1618-2642
dc.identifier.uri http://hdl.handle.net/10251/82259
dc.description.abstract This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (> 120 re-uses). The proposed method allowed the detection of 0.05 mu g L-1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters). es_ES
dc.description.sponsorship This work was supported by project CTQ2014-52765-R (Ministerio de Economia y Competitividad (MINECO) of Spain and Fondo Europeo de Desarrollo Regional (FEDER)) and PROMETEO/2016/145 (Conselleria de Educacion, Investigacion, Cultura y Deporte, Generalitat Valenciana, Spain). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Azoxystrobin es_ES
dc.subject Chlorothalonil es_ES
dc.subject Gold nanoparticles es_ES
dc.subject Polymer-based material es_ES
dc.subject Solid-phase extraction es_ES
dc.subject HPLC-DAD es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-016-9993-y
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-52765-R/ES/DESARROLLO DE FASES ESTACIONARIAS MONOLITICAS HIBRIDAS POLIMERO-NANOPARTICULAS Y SUS APLICACIONES EN SEPARACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F145/ES/Sistemas de separación basados en nuevos polímeros porosos y composites polímero-nanopartículas con aplicaciones industriales y medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Catalá-Icardo, M.; Gómez Benito, C.; Simo Alfonso, E.; Herrero Martinez, JM. (2017). Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Analytical and Bioanalytical Chemistry. 409(1):243-250. https://doi.org/10.1007/s00216-016-9993-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00216-016-9993-y es_ES
dc.description.upvformatpinicio 243 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 409 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 323388 es_ES
dc.identifier.eissn 1618-2650
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31. es_ES
dc.description.references Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62. es_ES
dc.description.references Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53. es_ES
dc.description.references U.S. Environmental Protection Agency (EPA). R.E.D. facts. Prevention, pesticides and toxic substances (4508C) Chlorothalonil; 1999. EPA-738-F-99-008. es_ES
dc.description.references Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston Jr DB. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Prot. 2007;26:83–8. es_ES
dc.description.references Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem. 2004;52:6361–72. es_ES
dc.description.references Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128:236–43. es_ES
dc.description.references Leandro CC, Hancock O, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. J Chromatogr A. 2007;1166:152–62. es_ES
dc.description.references Ono Y, Yamagami T, Nishina T, Tobino T. Pesticide multiresidue analysis of 303 compounds using supercritical fluid extraction. Anal Sci. 2006;22:1473–6. es_ES
dc.description.references Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165:200–12. es_ES
dc.description.references Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF, et al. A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc. 2014;25:1520–7. es_ES
dc.description.references Słowik-Borowiec M. Validation of a QuEChERS-based gas chromatographic method for multiresidue pesticide analysis in fresh peppermint including studies of matrix effects. Food Anal Methods. 2015;8:1413–24. es_ES
dc.description.references El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M, et al. Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem. 2013;93:499–510. es_ES
dc.description.references Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, et al. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. 2015;1381:37–47. es_ES
dc.description.references Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213. es_ES
dc.description.references Żwir-Ferenc A, Biziuk M. Solid phase extraction technique—trends, opportunities and applications. Pol J Environ Stud. 2006;15:677–90. es_ES
dc.description.references Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21. es_ES
dc.description.references Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767–81. es_ES
dc.description.references Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res. 2016;7:9–16. es_ES
dc.description.references Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73. es_ES
dc.description.references Tong S, Liu S, Wang H, Jia Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatographia. 2014;77:5–14. es_ES
dc.description.references Lv Y, Maya Alejandro F, Fréchet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121–8. es_ES
dc.description.references Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun. 2010;46:2109–11. es_ES
dc.description.references Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control. 2014;46:108–14. es_ES
dc.description.references Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43. es_ES
dc.description.references Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8. es_ES
dc.description.references Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors Actuators B. 2015;220:216–21. es_ES
dc.description.references Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst. 2009;134:80–6. es_ES
dc.description.references Zhao L, Zhao F, Zeng B. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24. es_ES
dc.description.references Pan Y, Wang X, Zhang H, Kang Y, Wu T, Du Y. Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection. Anal Methods. 2015;7:1349–57. es_ES
dc.description.references Zhou X, Zhou F, Liu H, Yang L, Liu J. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst. 2013;138:5832–8. es_ES
dc.description.references Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–73. es_ES
dc.description.references Lee C, Bae SJ, Gong M, Kim K, Joo S. Surface-enhanced Raman scattering of 4,4′-dicyanobiphenyl on gold and silver nanoparticle surfaces. J Raman Spectrosc. 2002;33:429–33. es_ES
dc.description.references International Conference on Harmonization (ICH guidelines). Validation of analytical procedures: text and methodology. ICH-Q2, Geneva; 1996. es_ES
dc.description.references Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330/32. 1998. es_ES
dc.description.references Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, et al. Regulatory limits for pesticide residues in water (IUPAC technical Report). Pure Appl Chem. 2003;75:1123–55. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem