Mostrar el registro sencillo del ítem
dc.contributor.author | Deses, D. | es_ES |
dc.contributor.author | de Groot-Van der Voorde, A. | es_ES |
dc.contributor.author | Lowen-Colebunders, E. | es_ES |
dc.date.accessioned | 2017-06-05T10:02:24Z | |
dc.date.available | 2017-06-05T10:02:24Z | |
dc.date.issued | 2003-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82367 | |
dc.description.abstract | [EN] A closure space X is a set endowed with a closure operator P(X) → P(X), satisfying the usual topological axioms, except finite additivity. A T1 closure extension Y of a closure space X induces a structure ϒ on X satisfying the smallness axioms introduced by H. Herrlich [?], except the one on finite unions of collections. We'll use the word seminearness for a smallness structure of this type, i.e. satisfying the conditions (S1),(S2),(S3) and (S5) from [?]. In this paper we show that every T1 seminearness structure ϒ on X can in fact be induced by a T1 closure extension. This result is quite different from its topological counterpart which was treated by S.A. Naimpally and J.H.M. Whitfield in [?]. Also in the topological setting the existence of (strict) extensions satisfying higher separation conditions such as T2 and T3 has been completely characterized by means of concreteness, separatedness and regularity [?]. In the closure setting these conditions will appear to be too weak to ensure the existence of suitable (strict) extensions. In this paper we introduce stronger alternatives in order to present internal characterizations of the existence of (strict) T2 or strict regular closure extensions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Closure space | es_ES |
dc.subject | Seminearness | es_ES |
dc.subject | Separation | es_ES |
dc.subject | Regularity | es_ES |
dc.subject | (strict) extension | es_ES |
dc.subject | Minimal small stack | es_ES |
dc.title | Extensions of closure spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-06-05T09:13:39Z | |
dc.identifier.doi | 10.4995/agt.2003.2028 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Deses, D.; De Groot-Van Der Voorde, A.; Lowen-Colebunders, E. (2003). Extensions of closure spaces. Applied General Topology. 4(2):223-241. https://doi.org/10.4995/agt.2003.2028 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2003.2028 | es_ES |
dc.description.upvformatpinicio | 223 | es_ES |
dc.description.upvformatpfin | 241 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | J. Adámek, H. Herrlich and G. Strecker, Abstract and concrete categories, Wiley and sons, New York (1990). | es_ES |
dc.description.references | Aerts, D. (1999). International Journal of Theoretical Physics, 38(1), 289-358. doi:10.1023/a:1026605829007 | es_ES |
dc.description.references | G. Aumann, Kontaktrelationen, Bayer. Akad. Wiss. Math. - Nat. Kl. Sitzungber. (1970), 67-77. | es_ES |
dc.description.references | Bennett, M. K. (1995). Affine and Projective Geometry. doi:10.1002/9781118032565 | es_ES |
dc.description.references | H.L. Bentley, Nearness spaces and extensions of topological spaces, Studies in Topology, Academic Press (1975), 47-66. | es_ES |
dc.description.references | Bentley, H. L., Herrlich, H., & Lowen-Colebunders, E. (1990). Convergence. Journal of Pure and Applied Algebra, 68(1-2), 27-45. doi:10.1016/0022-4049(90)90130-a | es_ES |
dc.description.references | H.L. Bentley and E. Lowen-Colebunders, Completely regular spaces, Commentat. Math. Univ. Carol., 32(1) (1991), 129-153. | es_ES |
dc.description.references | G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, Rhode Island (1940). | es_ES |
dc.description.references | V. Claes, E. Lowen-Colebunders and G. Sonck, Cartesian closed topological hull of the construct of closure spaces, Theory Appl. Categ., 8 (2001), 481-489. | es_ES |
dc.description.references | D. Deses and E. Lowen-Colebunders, On completeness in a non-Archimedean setting, via firm reflections, accepted for publication, Bulletin Belgian Math. Soc. | es_ES |
dc.description.references | M. Erné, Lattice representations for categories of closure spaces, Categorical topology, Heldermann Verlag, Berlin (1984), 197-222. | es_ES |
dc.description.references | Faure, C.-A., & Frölicher, A. (2000). Modern Projective Geometry. doi:10.1007/978-94-015-9590-2 | es_ES |
dc.description.references | B. Ganter and R. Wille, Formal Concept Analysis, Springer Verlag, Berlin (1998). | es_ES |
dc.description.references | Herrlich, H. (1974). A concept of nearness. General Topology and its Applications, 4(3), 191-212. doi:10.1016/0016-660x(74)90021-x | es_ES |
dc.description.references | H. Herrlich, Topological structures, Math. Centre Tracts, 52 (1974), 59-122. | es_ES |
dc.description.references | H. Herrlich, Topologie II: Uniforme Räume, Heldermann Verlag, Berlin (1987). | es_ES |
dc.description.references | Naimpally, S. A., & Whitfield, J. H. M. (1975). Not every near family is contained in a clan. Proceedings of the American Mathematical Society, 47(1), 237-237. doi:10.1090/s0002-9939-1975-0358703-9 | es_ES |
dc.description.references | D.J. Moore, Categories of representations of physical systems, Helv. Phys. Acta, 68 (1995), 658-678. | es_ES |
dc.description.references | C. Piron, Recent developments in quantum mechanics, Helv. Phys. Acta, 62 (1989), 82-90. | es_ES |
dc.description.references | G. Preuss, Theory of Topological Structures, D. Reidel Publishing Company, Dordrecht (1989). | es_ES |