- -

Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis

Show full item record

Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports. 6:1-14. doi:10.1038/srep37945

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82411

Files in this item

Item Metadata

Title: Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Nitric oxide (NO) regulates plant growth and development as well as responses to stress that enhanced its endogenous production. Arabidopsis plants exposed to a pulse of exogenous NO gas were used for untargeted global ...[+]
Subjects: Programmed cell-death , Tyrosine nitration , Abiotic stress , Plant-cells , Posttranslational modification , Clorophyll breakdown , Signaling pathways , Redox balance , Degradation , Responses
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep37945
Publisher:
Nature Publishing Group
Publisher version: http://doi.org/10.1038/srep37945
Thanks:
This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Danny Alexander (Metabolon Inc., USA) on ...[+]
Type: Artículo

References

Arc, E., Galland, M., Godin, B., Cueff, G. & Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 4, 346 (2013).

Beligni, M. V. & Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215–221 (2000).

Lozano-Juste, J. & León, J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156, 1410–1123 (2011). [+]
Arc, E., Galland, M., Godin, B., Cueff, G. & Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 4, 346 (2013).

Beligni, M. V. & Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215–221 (2000).

Lozano-Juste, J. & León, J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156, 1410–1123 (2011).

He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 (2004).

Tsai, Y. C., Delk, N. A., Chowdhury, N. I. & Braam, J. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal. Behav. 2, 446–454 (2007).

Manjunatha, G., Lokesh, V. & Neelwarne, B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol. Adv. 28, 489–499 (2010).

Liu, F. & Guo, F. Q. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8(2), e56345 (2013).

Du, J. et al. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65, 4051–4063 (2014).

Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).

Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).

Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).

Groβ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).

Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).

Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).

Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).

Skalska, K., Miller, J. S. & Ledakowicz, S. Trends in NO(x) abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010).

Pilegaard, K. Processes regulating nitric oxide emissions from soils. Phil. Transac. Royal Soc. London. Ser. B, Biol. Sci. 368, 20130126 (2013).

Jaegle, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discus. 130, 407–423 (2005).

Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).

Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).

Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).

Noctor, G., Lelarge-Trouverie, C. & Mhamdi, A. The metabolomics of oxidative stress. Phytochemistry 112, 33–53 (2015).

Allan, W. L., Simpson, J. P., Clark, S. M. & Shelp, B. J. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59, 2555–2564 (2008).

Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I. & Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant 7, 264–276 (2014).

Noctor, G. et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484 (2012).

Feussner, I. & Wasternack, C. The lipoxygenase pathway. Ann. Rev. Plant Biol. 53, 275–297 (2002).

Green, M. A. & Fry, S. C. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433, 83–87 (2005).

Szarka, A., Tomasskovics, B. & Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483 (2012).

Hurlock, A. K., Roston, R. L., Wang, K. & Benning, C. Lipid trafficking in plant cells. Traffic 15, 915–932 (2014).

Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194 (2003).

Yeats, T. H. & Rose, J. K. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).

Lozano-Juste, J. & León, J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).

Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol. 82, 505–17 (2013).

Pruzinská, A. et al. Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139, 52–63 (2005).

Hirashima, M., Tanaka, R. & Tanaka, A. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719–29 (2009).

Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F. & Lo Schiavo, F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot. 58, 1397–1405 (2007).

Mainz, E. R. et al. Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Analytical Methods 4, 414–420 (2012).

Vandelle, E. & Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539 (2011).

Minocha, R., Majumdar, R. & Minocha, S. C. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5, 175 (2014).

Parsons H. T., Yasmin, T. & Fry, S. C. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem. J. 440, 375–383 (2011).

Hou, Q., Ufer, G. & Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–4108 (2016).

Zhou, X. R., Callahan, D. L., Shrestha, P., Liu, Q., Petrie, J. R. & Singh, S. P. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front. Plant Sci. 5, 41 (2014).

Pohl, C. H. & Kock, J. L. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 19, 1273–1285 (2014).

Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J. & Fernie, A. R. Protein degradation-an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498 (2011).

Sakamoto, W. & Takami, T. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65, 3835–3843 (2014).

Del Duca, S., Serafini-Fracassini, D. & Cai, G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci. 5, 120 (2014).

Franco, M. C. & Estévez, A. G. Tyrosine nitration as mediator of cell death. Cell. Mol. Life Sci. 71, 3939–3950 (2014).

Palumbo, A., Fiore, G., Di Cristo, C., Di Cosmo, A. & d’Ischia, M. NMDA receptor stimulation induces temporary alpha-tubulin degradation signalled by nitric oxide-mediated tyrosine nitration in the nervous system of Sepia officinalis. Biochem. Biophys. Res. Commun. 293, 1536–1543 (2002).

Wang, Y. Y., Lin, S. Y., Chuang, Y. H., Mao, C. H., Tung, K. C. & Sheu, W. H. Protein nitration is associated with increased proteolysis in skeletal muscle of bile duct ligation-induced cirrhotic rats. Metabolism 59, 468–472 (2010).

Castillo, M. C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L. & León, J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci. Signal. 8(392), ra89 (2015).

Blaise, G. A., Gauvin, D., Gangal, M. & Authier, S. Nitric oxide, cell signaling and cell death. Toxicology 208, 177–192 (2005).

Brüne, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869 (2003).

Wang, Y., Chen, C., Loake, G. J. & Chu, C. Nitric oxide: promoter or suppressor of programmed cell death? Prot. Cell 1, 133–142 (2010).

Serrano, I., Romero-Puertas, M. C., Sandalio, L. M. & Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 66, 2869–2876 (2015).

Huang, S., Hill, R. D. & Stasolla, C. Plant hemoglobin participation in cell fate determination. Plant Signal. Behavior 9, e29485 (2014).

Maes, M. B., Scharpé, S. & De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta 380, 31–49 (2007).

Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).

Kitamura, K. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 48, 235–243 (2016).

Duek, P. D., Elmer, M. V., van Oosten, V. R. & Fankhauser C. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol. 14, 2296–2301 (2004).

[-]

This item appears in the following Collection(s)

Show full item record