Mostrar el registro sencillo del ítem
dc.contributor.author | Berbel Tornero, Ana | es_ES |
dc.contributor.author | Ferrandiz Maestre, Cristina | es_ES |
dc.contributor.author | Hecht, Valerie | es_ES |
dc.contributor.author | Dalmais, Marion | es_ES |
dc.contributor.author | Lund, Ole S. | es_ES |
dc.contributor.author | Sussmilch, Frances C | es_ES |
dc.contributor.author | Taylor, Scott A. | es_ES |
dc.contributor.author | Bendahmane, Abdelhafid | es_ES |
dc.contributor.author | Ellis, T. H. Noel | es_ES |
dc.contributor.author | Beltran Porter, Jose Pio | es_ES |
dc.contributor.author | Weller, James L. | es_ES |
dc.contributor.author | Madueño Albi, Francisco | es_ES |
dc.date.accessioned | 2017-06-06T09:37:37Z | |
dc.date.available | 2017-06-06T09:37:37Z | |
dc.date.issued | 2012-04 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10251/82412 | |
dc.description.abstract | [EN] Unravelling the basis of variation in inflorescence architecture is important to understanding how the huge diversity in plant form has been generated. Inflorescences are divided between simple, as in Arabidopsis, with flowers directly formed at the main primary inflorescence axis, and compound, as in legumes, where they are formed at secondary or even higher order axes. The formation of secondary inflorescences predicts a novel genetic function in the development of the compound inflorescences. Here we show that in pea this function is controlled by VEGETATIVE1 (VEG1), whose mutation replaces secondary inflorescences by vegetative branches. We identify VEG1 as an AGL79-like MADS-box gene that specifies secondary inflorescence meristem identity. VEG1 misexpression in meristem identity mutants causes ectopic secondary inflorescence formation, suggesting a model for compound inflorescence development based on antagonistic interactions between VEG1 and genes conferring primary inflorescence and floral identity. Our study defines a novel mechanism to generate inflorescence complexity. | es_ES |
dc.description.sponsorship | We thank Christine Le Signor for sending the seed from the pea TILLING lines, and to Miguel Blazquez for critical reading of the manuscript. This work was supported by grants from Spanish Ministerio de Ciencia e Innovacion (BIO2009-10876 to F. M. and BIO2009-09920 to C. F.), the Conselleria d'Empresa Universitat i Ciencia from the Generalitat Valenciana (GV03-066 to F. M., C. F. and J.P.B.), the EU-FP6 (GL-IP, FP6-2002-FOOD-1-506223, to F. M., C. F., J.P.B., T.H.N.E and A. Bendahmane), the EU-FP4 (EUdicotMap, BIOCT972170, to T.H.N.E. and S. A. T.), the Australian Research Council (Discovery Project DP6556508 to J.L.W., V. H. and F. C. S.) and the Danish Agricultural and Veterinary Research Council (grants nos. 9702802 and 53-00-0330 to O.S.L.). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | FLORAL ORGAN IDENTITY | es_ES |
dc.subject | REVERSE GENETICS TOOL | es_ES |
dc.subject | MADS-BOX GENES | es_ES |
dc.subject | MERISTEM IDENTITY | es_ES |
dc.subject | PLANT ARCHITECTURE | es_ES |
dc.subject | INTEGRATOR FT | es_ES |
dc.subject | ARABIDOPSIS | es_ES |
dc.subject | EVOLUTION | es_ES |
dc.subject | APETALA1 | es_ES |
dc.subject | HOMOLOG | es_ES |
dc.title | VEGETATIVE1 is essential for development of the compound inflorescence in pea | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms1801 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Discovery Projects/DP6556508/AU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Discovery Project/DP6556508/AU/Discovery Project - Grant ID: DP6556508/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2003%2F066/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2009-10876/ES/Arquitectura De La Inflorescencia; Genes Que Controlan La Identidad De Los Meristemos Del Tallo/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/506223/EU/New strategies to improve grain legumes for food and feed/GRAIN LEGUMES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP4/BIOCT972170/EU//EUdicotMap/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2009-09920/ES/Conservacion De Los Modelos Geneticos Que Explican La Morfogenesis Del Carpelo Y El Fruto En Las Eudicotiledoneas/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Berbel Tornero, A.; Ferrandiz Maestre, C.; Hecht, V.; Dalmais, M.; Lund, OS.; Sussmilch, FC.; Taylor, SA.... (2012). VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications. 3:797-804. https://doi.org/10.1038/ncomms1801 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/ncomms1801 | es_ES |
dc.description.upvformatpinicio | 797 | es_ES |
dc.description.upvformatpfin | 804 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.relation.senia | 233297 | es_ES |
dc.identifier.pmid | 22531182 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Australian Research Council | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676 (2007). | es_ES |
dc.description.references | Weberling, F. Morphology of Flowers and Inflorescences (Cambridge University Press, 1992). | es_ES |
dc.description.references | Wang, Y. & Li, J. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008). | es_ES |
dc.description.references | Kellogg, E. A. Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31 (2007). | es_ES |
dc.description.references | Thompson, B. E. & Hake, S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol. 149, 38–45 (2009). | es_ES |
dc.description.references | Bommert, P., Satoh-Nagasawa, N., Jackson, D. & Hirano, H.- Y. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78 (2005). | es_ES |
dc.description.references | Bortiri, E. & Hake, S. Flowering and determinacy in maize. J. Exp. Bot. 58, 909–916 (2007). | es_ES |
dc.description.references | Lippman, Z. B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008). | es_ES |
dc.description.references | Doyle, J. J. & Luckow, M. A. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131, 900–910 (2003). | es_ES |
dc.description.references | Weberling, F. In Advances in Legume Biology Vol. 29 (eds C.H. Stirton & J.L. Zarucchi) 35–58 (Missouri Botanoical Gardens, 1989). | es_ES |
dc.description.references | Gottschalk, W. A Pisum gene preventing transition from the vegetative stage. Pisum Newslet. 11, 10 (1979). | es_ES |
dc.description.references | Reid, J. B. & Murfet, I. C. Flowering in Pisum: a fifth locus, veg. Ann. Bot. 53, 369–382 (1984). | es_ES |
dc.description.references | Singer, S. Inflorescence Architecture: a developmental genetics approach. Bot. Rev. 65, 1–26 (1999). | es_ES |
dc.description.references | Berbel, A. et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25, 441–451 (2001). | es_ES |
dc.description.references | Foucher, F. et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15, 2742–2754 (2003). | es_ES |
dc.description.references | Hecht, V. et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23, 147–161 (2011). | es_ES |
dc.description.references | Taylor, S. A. et al. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 129, 1150–1159 (2002). | es_ES |
dc.description.references | Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 275, 80 (1997). | es_ES |
dc.description.references | Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277 (1992). | es_ES |
dc.description.references | Blázquez, M. A., Ferrándiz, C., Madueño, F. & Parcy, F. How floral meristems are built. Plant Mol. Biol. 60, 855–870 (2006). | es_ES |
dc.description.references | Benlloch, R. et al. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 142, 972–983 (2006). | es_ES |
dc.description.references | Hecht, V. et al. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137, 1420–1434 (2005). | es_ES |
dc.description.references | Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940 (2004). | es_ES |
dc.description.references | Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. & Yanofsky, M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000). | es_ES |
dc.description.references | Litt, A. & Irish, V. F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165, 821–833 (2003). | es_ES |
dc.description.references | Shan, H. et al. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol. Phylogenet. Evol. 44, 26–41 (2007). | es_ES |
dc.description.references | Hecht, V. et al. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144, 648–661 (2007). | es_ES |
dc.description.references | Dalmais, M. et al. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 9, R43 (2008). | es_ES |
dc.description.references | Constantin, G. D. et al. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J. 40, 622–631 (2004). | es_ES |
dc.description.references | Singer, S. R., Maki, S. L. & Mullen, H. J. Specification of meristem identity in Pisum sativum inflorescence development. Flowering Newslet. 18, 26–32 (1994). | es_ES |
dc.description.references | Reid, J., Murfet, I., Singer, S., Weller, J. & Taylor, S. Physiological-genetics of flowering inPisum. Seminars in Cell and Developmental Biology 7, 455–463 (1996). | es_ES |
dc.description.references | Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005). | es_ES |
dc.description.references | Giakountis, A. & Coupland, G. Phloem transport of flowering signals. Curr. Opin. Plant Biol. 11, 687–694 (2008). | es_ES |
dc.description.references | Teper-Bamnolker, P. & Samach, A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17, 2661–2675 (2005). | es_ES |
dc.description.references | Wigge, P. A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059 (2005). | es_ES |
dc.description.references | Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D. & Coen, E. Evolution and development of inflorescence architectures. Science 316, 1452–1456 (2007). | es_ES |
dc.description.references | Litt, A. An evaluation of A-Function: evidence from the APETALA1 and APETALA2 gene lineages. Int. J. Plant Sci. 168, 73–91 (2007). | es_ES |
dc.description.references | Gallavotti, A. et al. The control of axillary meristem fate in the maize ramosa pathway. Development 137, 2849–2856 (2010). | es_ES |
dc.description.references | Hewitt, Y. Sand and Water Culture Methods used in the Study of Plant Nutrition 2nd edn, (Farnham: Commonwealth Agricultural Bureau, 1966). | es_ES |
dc.description.references | Singer, S., Hsiung, L. & Huber, S. Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. Am. J. Bot. 77, 130–135 (1990). | es_ES |
dc.description.references | Murfet, I. C. & Reid, J B. In Peas - Genetics, Molecular Biology and Biotechnology (eds R Casey & D R Davies) 165–216 (CAB International, 1993). | es_ES |
dc.description.references | Constantin, G. D., Grønlund, M., Johansen, I. E., Stougaard, J. & Lund, O. S. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact. 21, 720–727 (2008). | es_ES |
dc.description.references | Weller, J., Hecht, V., Vander Schoor, J., Davidson, S. & Ross, J. Light regulation of gibberellin biosynthesis in Pea is mediated through the COP1/HY5 Pathway. Plant Cell 3, 800–813 (2009). | es_ES |
dc.description.references | Ferrándiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000). | es_ES |
dc.description.references | Berbel, A. et al. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174–185 (2005). | es_ES |