- -

VEGETATIVE1 is essential for development of the compound inflorescence in pea

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

VEGETATIVE1 is essential for development of the compound inflorescence in pea

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berbel Tornero, Ana es_ES
dc.contributor.author Ferrandiz Maestre, Cristina es_ES
dc.contributor.author Hecht, Valerie es_ES
dc.contributor.author Dalmais, Marion es_ES
dc.contributor.author Lund, Ole S. es_ES
dc.contributor.author Sussmilch, Frances C es_ES
dc.contributor.author Taylor, Scott A. es_ES
dc.contributor.author Bendahmane, Abdelhafid es_ES
dc.contributor.author Ellis, T. H. Noel es_ES
dc.contributor.author Beltran Porter, Jose Pio es_ES
dc.contributor.author Weller, James L. es_ES
dc.contributor.author Madueño Albi, Francisco es_ES
dc.date.accessioned 2017-06-06T09:37:37Z
dc.date.available 2017-06-06T09:37:37Z
dc.date.issued 2012-04
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/82412
dc.description.abstract [EN] Unravelling the basis of variation in inflorescence architecture is important to understanding how the huge diversity in plant form has been generated. Inflorescences are divided between simple, as in Arabidopsis, with flowers directly formed at the main primary inflorescence axis, and compound, as in legumes, where they are formed at secondary or even higher order axes. The formation of secondary inflorescences predicts a novel genetic function in the development of the compound inflorescences. Here we show that in pea this function is controlled by VEGETATIVE1 (VEG1), whose mutation replaces secondary inflorescences by vegetative branches. We identify VEG1 as an AGL79-like MADS-box gene that specifies secondary inflorescence meristem identity. VEG1 misexpression in meristem identity mutants causes ectopic secondary inflorescence formation, suggesting a model for compound inflorescence development based on antagonistic interactions between VEG1 and genes conferring primary inflorescence and floral identity. Our study defines a novel mechanism to generate inflorescence complexity. es_ES
dc.description.sponsorship We thank Christine Le Signor for sending the seed from the pea TILLING lines, and to Miguel Blazquez for critical reading of the manuscript. This work was supported by grants from Spanish Ministerio de Ciencia e Innovacion (BIO2009-10876 to F. M. and BIO2009-09920 to C. F.), the Conselleria d'Empresa Universitat i Ciencia from the Generalitat Valenciana (GV03-066 to F. M., C. F. and J.P.B.), the EU-FP6 (GL-IP, FP6-2002-FOOD-1-506223, to F. M., C. F., J.P.B., T.H.N.E and A. Bendahmane), the EU-FP4 (EUdicotMap, BIOCT972170, to T.H.N.E. and S. A. T.), the Australian Research Council (Discovery Project DP6556508 to J.L.W., V. H. and F. C. S.) and the Danish Agricultural and Veterinary Research Council (grants nos. 9702802 and 53-00-0330 to O.S.L.). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject FLORAL ORGAN IDENTITY es_ES
dc.subject REVERSE GENETICS TOOL es_ES
dc.subject MADS-BOX GENES es_ES
dc.subject MERISTEM IDENTITY es_ES
dc.subject PLANT ARCHITECTURE es_ES
dc.subject INTEGRATOR FT es_ES
dc.subject ARABIDOPSIS es_ES
dc.subject EVOLUTION es_ES
dc.subject APETALA1 es_ES
dc.subject HOMOLOG es_ES
dc.title VEGETATIVE1 is essential for development of the compound inflorescence in pea es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms1801
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Discovery Projects/DP6556508/AU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Discovery Project/DP6556508/AU/Discovery Project - Grant ID: DP6556508/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2003%2F066/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-10876/ES/Arquitectura De La Inflorescencia; Genes Que Controlan La Identidad De Los Meristemos Del Tallo/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/506223/EU/New strategies to improve grain legumes for food and feed/GRAIN LEGUMES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP4/BIOCT972170/EU//EUdicotMap/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-09920/ES/Conservacion De Los Modelos Geneticos Que Explican La Morfogenesis Del Carpelo Y El Fruto En Las Eudicotiledoneas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Berbel Tornero, A.; Ferrandiz Maestre, C.; Hecht, V.; Dalmais, M.; Lund, OS.; Sussmilch, FC.; Taylor, SA.... (2012). VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications. 3:797-804. https://doi.org/10.1038/ncomms1801 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms1801 es_ES
dc.description.upvformatpinicio 797 es_ES
dc.description.upvformatpfin 804 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.relation.senia 233297 es_ES
dc.identifier.pmid 22531182
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Australian Research Council es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676 (2007). es_ES
dc.description.references Weberling, F. Morphology of Flowers and Inflorescences (Cambridge University Press, 1992). es_ES
dc.description.references Wang, Y. & Li, J. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008). es_ES
dc.description.references Kellogg, E. A. Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31 (2007). es_ES
dc.description.references Thompson, B. E. & Hake, S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol. 149, 38–45 (2009). es_ES
dc.description.references Bommert, P., Satoh-Nagasawa, N., Jackson, D. & Hirano, H.- Y. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78 (2005). es_ES
dc.description.references Bortiri, E. & Hake, S. Flowering and determinacy in maize. J. Exp. Bot. 58, 909–916 (2007). es_ES
dc.description.references Lippman, Z. B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008). es_ES
dc.description.references Doyle, J. J. & Luckow, M. A. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131, 900–910 (2003). es_ES
dc.description.references Weberling, F. In Advances in Legume Biology Vol. 29 (eds C.H. Stirton & J.L. Zarucchi) 35–58 (Missouri Botanoical Gardens, 1989). es_ES
dc.description.references Gottschalk, W. A Pisum gene preventing transition from the vegetative stage. Pisum Newslet. 11, 10 (1979). es_ES
dc.description.references Reid, J. B. & Murfet, I. C. Flowering in Pisum: a fifth locus, veg. Ann. Bot. 53, 369–382 (1984). es_ES
dc.description.references Singer, S. Inflorescence Architecture: a developmental genetics approach. Bot. Rev. 65, 1–26 (1999). es_ES
dc.description.references Berbel, A. et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25, 441–451 (2001). es_ES
dc.description.references Foucher, F. et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15, 2742–2754 (2003). es_ES
dc.description.references Hecht, V. et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23, 147–161 (2011). es_ES
dc.description.references Taylor, S. A. et al. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 129, 1150–1159 (2002). es_ES
dc.description.references Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 275, 80 (1997). es_ES
dc.description.references Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277 (1992). es_ES
dc.description.references Blázquez, M. A., Ferrándiz, C., Madueño, F. & Parcy, F. How floral meristems are built. Plant Mol. Biol. 60, 855–870 (2006). es_ES
dc.description.references Benlloch, R. et al. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 142, 972–983 (2006). es_ES
dc.description.references Hecht, V. et al. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137, 1420–1434 (2005). es_ES
dc.description.references Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940 (2004). es_ES
dc.description.references Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. & Yanofsky, M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000). es_ES
dc.description.references Litt, A. & Irish, V. F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165, 821–833 (2003). es_ES
dc.description.references Shan, H. et al. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol. Phylogenet. Evol. 44, 26–41 (2007). es_ES
dc.description.references Hecht, V. et al. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144, 648–661 (2007). es_ES
dc.description.references Dalmais, M. et al. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 9, R43 (2008). es_ES
dc.description.references Constantin, G. D. et al. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J. 40, 622–631 (2004). es_ES
dc.description.references Singer, S. R., Maki, S. L. & Mullen, H. J. Specification of meristem identity in Pisum sativum inflorescence development. Flowering Newslet. 18, 26–32 (1994). es_ES
dc.description.references Reid, J., Murfet, I., Singer, S., Weller, J. & Taylor, S. Physiological-genetics of flowering inPisum. Seminars in Cell and Developmental Biology 7, 455–463 (1996). es_ES
dc.description.references Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005). es_ES
dc.description.references Giakountis, A. & Coupland, G. Phloem transport of flowering signals. Curr. Opin. Plant Biol. 11, 687–694 (2008). es_ES
dc.description.references Teper-Bamnolker, P. & Samach, A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17, 2661–2675 (2005). es_ES
dc.description.references Wigge, P. A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059 (2005). es_ES
dc.description.references Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D. & Coen, E. Evolution and development of inflorescence architectures. Science 316, 1452–1456 (2007). es_ES
dc.description.references Litt, A. An evaluation of A-Function: evidence from the APETALA1 and APETALA2 gene lineages. Int. J. Plant Sci. 168, 73–91 (2007). es_ES
dc.description.references Gallavotti, A. et al. The control of axillary meristem fate in the maize ramosa pathway. Development 137, 2849–2856 (2010). es_ES
dc.description.references Hewitt, Y. Sand and Water Culture Methods used in the Study of Plant Nutrition 2nd edn, (Farnham: Commonwealth Agricultural Bureau, 1966). es_ES
dc.description.references Singer, S., Hsiung, L. & Huber, S. Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. Am. J. Bot. 77, 130–135 (1990). es_ES
dc.description.references Murfet, I. C. & Reid, J B. In Peas - Genetics, Molecular Biology and Biotechnology (eds R Casey & D R Davies) 165–216 (CAB International, 1993). es_ES
dc.description.references Constantin, G. D., Grønlund, M., Johansen, I. E., Stougaard, J. & Lund, O. S. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact. 21, 720–727 (2008). es_ES
dc.description.references Weller, J., Hecht, V., Vander Schoor, J., Davidson, S. & Ross, J. Light regulation of gibberellin biosynthesis in Pea is mediated through the COP1/HY5 Pathway. Plant Cell 3, 800–813 (2009). es_ES
dc.description.references Ferrándiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000). es_ES
dc.description.references Berbel, A. et al. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174–185 (2005). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem