Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676 (2007).
Weberling, F. Morphology of Flowers and Inflorescences (Cambridge University Press, 1992).
Wang, Y. & Li, J. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008).
[+]
Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676 (2007).
Weberling, F. Morphology of Flowers and Inflorescences (Cambridge University Press, 1992).
Wang, Y. & Li, J. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008).
Kellogg, E. A. Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31 (2007).
Thompson, B. E. & Hake, S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol. 149, 38–45 (2009).
Bommert, P., Satoh-Nagasawa, N., Jackson, D. & Hirano, H.- Y. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78 (2005).
Bortiri, E. & Hake, S. Flowering and determinacy in maize. J. Exp. Bot. 58, 909–916 (2007).
Lippman, Z. B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008).
Doyle, J. J. & Luckow, M. A. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131, 900–910 (2003).
Weberling, F. In Advances in Legume Biology Vol. 29 (eds C.H. Stirton & J.L. Zarucchi) 35–58 (Missouri Botanoical Gardens, 1989).
Gottschalk, W. A Pisum gene preventing transition from the vegetative stage. Pisum Newslet. 11, 10 (1979).
Reid, J. B. & Murfet, I. C. Flowering in Pisum: a fifth locus, veg. Ann. Bot. 53, 369–382 (1984).
Singer, S. Inflorescence Architecture: a developmental genetics approach. Bot. Rev. 65, 1–26 (1999).
Berbel, A. et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25, 441–451 (2001).
Foucher, F. et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15, 2742–2754 (2003).
Hecht, V. et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23, 147–161 (2011).
Taylor, S. A. et al. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 129, 1150–1159 (2002).
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 275, 80 (1997).
Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277 (1992).
Blázquez, M. A., Ferrándiz, C., Madueño, F. & Parcy, F. How floral meristems are built. Plant Mol. Biol. 60, 855–870 (2006).
Benlloch, R. et al. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 142, 972–983 (2006).
Hecht, V. et al. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137, 1420–1434 (2005).
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940 (2004).
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. & Yanofsky, M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000).
Litt, A. & Irish, V. F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165, 821–833 (2003).
Shan, H. et al. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol. Phylogenet. Evol. 44, 26–41 (2007).
Hecht, V. et al. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144, 648–661 (2007).
Dalmais, M. et al. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 9, R43 (2008).
Constantin, G. D. et al. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J. 40, 622–631 (2004).
Singer, S. R., Maki, S. L. & Mullen, H. J. Specification of meristem identity in Pisum sativum inflorescence development. Flowering Newslet. 18, 26–32 (1994).
Reid, J., Murfet, I., Singer, S., Weller, J. & Taylor, S. Physiological-genetics of flowering inPisum. Seminars in Cell and Developmental Biology 7, 455–463 (1996).
Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005).
Giakountis, A. & Coupland, G. Phloem transport of flowering signals. Curr. Opin. Plant Biol. 11, 687–694 (2008).
Teper-Bamnolker, P. & Samach, A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17, 2661–2675 (2005).
Wigge, P. A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059 (2005).
Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D. & Coen, E. Evolution and development of inflorescence architectures. Science 316, 1452–1456 (2007).
Litt, A. An evaluation of A-Function: evidence from the APETALA1 and APETALA2 gene lineages. Int. J. Plant Sci. 168, 73–91 (2007).
Gallavotti, A. et al. The control of axillary meristem fate in the maize ramosa pathway. Development 137, 2849–2856 (2010).
Hewitt, Y. Sand and Water Culture Methods used in the Study of Plant Nutrition 2nd edn, (Farnham: Commonwealth Agricultural Bureau, 1966).
Singer, S., Hsiung, L. & Huber, S. Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. Am. J. Bot. 77, 130–135 (1990).
Murfet, I. C. & Reid, J B. In Peas - Genetics, Molecular Biology and Biotechnology (eds R Casey & D R Davies) 165–216 (CAB International, 1993).
Constantin, G. D., Grønlund, M., Johansen, I. E., Stougaard, J. & Lund, O. S. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact. 21, 720–727 (2008).
Weller, J., Hecht, V., Vander Schoor, J., Davidson, S. & Ross, J. Light regulation of gibberellin biosynthesis in Pea is mediated through the COP1/HY5 Pathway. Plant Cell 3, 800–813 (2009).
Ferrándiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).
Berbel, A. et al. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174–185 (2005).
[-]