- -

A note on locally v-bounded spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note on locally v-bounded spaces

Show full item record

Georgiou, D.; Iliadis, S. (2005). A note on locally v-bounded spaces. Applied General Topology. 6(2):143-148. doi:10.4995/agt.2005.1953.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82632

Files in this item

Item Metadata

Title: A note on locally v-bounded spaces
Author: Georgiou, D.N. Iliadis, S.D.
Issued date:
Abstract:
[EN] In this paper, on the family O(Y ) of all open subsets of a space Y (actually on a complete lattice) we define the so called strong v-Scott topology, denoted by τ8v, where v is an infinite cardinal. This topology ...[+]
Subjects: Strong Scott topology , Strong Isbell topology , Function space , Admissible topology
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2005.1953
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2005.1953
Type: Artículo

References

Arens, R., & Dugundji, J. (1951). Topologies for function spaces. Pacific Journal of Mathematics, 1(1), 5-31. doi:10.2140/pjm.1951.1.5

J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966.

S. Gagola and M. Gemignani, Absolutely bounded sets, Mathematica Japonicae, Vol. 13, No. 2 (1968), 129-132. [+]
Arens, R., & Dugundji, J. (1951). Topologies for function spaces. Pacific Journal of Mathematics, 1(1), 5-31. doi:10.2140/pjm.1951.1.5

J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966.

S. Gagola and M. Gemignani, Absolutely bounded sets, Mathematica Japonicae, Vol. 13, No. 2 (1968), 129-132.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., & Scott, D. S. (1980). A Compendium of Continuous Lattices. doi:10.1007/978-3-642-67678-9

P. Lambrinos, Subsets (m, n)-bounded in a topological space, Mathematica Balkanica, 4(1974), 391-397.

Lambrinos, P. T. (1975). Locally bounded spaces. Proceedings of the Edinburgh Mathematical Society, 19(4), 321-325. doi:10.1017/s0013091500010415

P. Lambrinos and B. K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 191-211.

F. Schwarz and S. Weck, Scott topology, Isbell topology and continuous convergence, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 251-271.

[-]

This item appears in the following Collection(s)

Show full item record