Mostrar el registro sencillo del ítem
dc.contributor.author | Georgiou, D.N. | es_ES |
dc.contributor.author | Iliadis, S.D. | es_ES |
dc.date.accessioned | 2017-06-09T08:32:50Z | |
dc.date.available | 2017-06-09T08:32:50Z | |
dc.date.issued | 2005-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82632 | |
dc.description.abstract | [EN] In this paper, on the family O(Y ) of all open subsets of a space Y (actually on a complete lattice) we define the so called strong v-Scott topology, denoted by τ8v, where v is an infinite cardinal. This topology defines on the set C(Y,Z) of all continuous functions on the space Y to a space Z a topology τ8v. The topology τ8v, is always larger than or equal to the strong Isbell topology. We study the topology τ8v in the case where Y is a locally v-bounded space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Strong Scott topology | es_ES |
dc.subject | Strong Isbell topology | es_ES |
dc.subject | Function space | es_ES |
dc.subject | Admissible topology | es_ES |
dc.title | A note on locally v-bounded spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-06-09T06:26:56Z | |
dc.identifier.doi | 10.4995/agt.2005.1953 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Georgiou, D.; Iliadis, S. (2005). A note on locally v-bounded spaces. Applied General Topology. 6(2):143-148. https://doi.org/10.4995/agt.2005.1953 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2005.1953 | es_ES |
dc.description.upvformatpinicio | 143 | es_ES |
dc.description.upvformatpfin | 148 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Arens, R., & Dugundji, J. (1951). Topologies for function spaces. Pacific Journal of Mathematics, 1(1), 5-31. doi:10.2140/pjm.1951.1.5 | es_ES |
dc.description.references | J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966. | es_ES |
dc.description.references | S. Gagola and M. Gemignani, Absolutely bounded sets, Mathematica Japonicae, Vol. 13, No. 2 (1968), 129-132. | es_ES |
dc.description.references | Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., & Scott, D. S. (1980). A Compendium of Continuous Lattices. doi:10.1007/978-3-642-67678-9 | es_ES |
dc.description.references | P. Lambrinos, Subsets (m, n)-bounded in a topological space, Mathematica Balkanica, 4(1974), 391-397. | es_ES |
dc.description.references | Lambrinos, P. T. (1975). Locally bounded spaces. Proceedings of the Edinburgh Mathematical Society, 19(4), 321-325. doi:10.1017/s0013091500010415 | es_ES |
dc.description.references | P. Lambrinos and B. K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 191-211. | es_ES |
dc.description.references | F. Schwarz and S. Weck, Scott topology, Isbell topology and continuous convergence, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 251-271. | es_ES |