- -

A note on locally v-bounded spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on locally v-bounded spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Georgiou, D.N. es_ES
dc.contributor.author Iliadis, S.D. es_ES
dc.date.accessioned 2017-06-09T08:32:50Z
dc.date.available 2017-06-09T08:32:50Z
dc.date.issued 2005-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/82632
dc.description.abstract [EN] In this paper, on the family O(Y ) of all open subsets of a space Y (actually on a complete lattice) we define the so called strong v-Scott topology, denoted by τ8v, where v is an infinite cardinal. This topology defines on the set C(Y,Z) of all continuous functions on the space Y to a space Z a topology τ8v. The topology τ8v, is always larger than or equal to the strong Isbell topology. We study the topology τ8v in the case where Y is a locally v-bounded space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Strong Scott topology es_ES
dc.subject Strong Isbell topology es_ES
dc.subject Function space es_ES
dc.subject Admissible topology es_ES
dc.title A note on locally v-bounded spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-06-09T06:26:56Z
dc.identifier.doi 10.4995/agt.2005.1953
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Georgiou, D.; Iliadis, S. (2005). A note on locally v-bounded spaces. Applied General Topology. 6(2):143-148. https://doi.org/10.4995/agt.2005.1953 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2005.1953 es_ES
dc.description.upvformatpinicio 143 es_ES
dc.description.upvformatpfin 148 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Arens, R., & Dugundji, J. (1951). Topologies for function spaces. Pacific Journal of Mathematics, 1(1), 5-31. doi:10.2140/pjm.1951.1.5 es_ES
dc.description.references J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966. es_ES
dc.description.references S. Gagola and M. Gemignani, Absolutely bounded sets, Mathematica Japonicae, Vol. 13, No. 2 (1968), 129-132. es_ES
dc.description.references Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., & Scott, D. S. (1980). A Compendium of Continuous Lattices. doi:10.1007/978-3-642-67678-9 es_ES
dc.description.references P. Lambrinos, Subsets (m, n)-bounded in a topological space, Mathematica Balkanica, 4(1974), 391-397. es_ES
dc.description.references Lambrinos, P. T. (1975). Locally bounded spaces. Proceedings of the Edinburgh Mathematical Society, 19(4), 321-325. doi:10.1017/s0013091500010415 es_ES
dc.description.references P. Lambrinos and B. K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 191-211. es_ES
dc.description.references F. Schwarz and S. Weck, Scott topology, Isbell topology and continuous convergence, Lecture Notes in Pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 251-271. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem