Silber, R., Malathi, V. G., & Hurwitz, J. (1972). Purification and Properties of Bacteriophage T4-Induced RNA Ligase. Proceedings of the National Academy of Sciences, 69(10), 3009-3013. doi:10.1073/pnas.69.10.3009
Wang, L. K., Ho, C. K., Pei, Y., & Shuman, S. (2003). Mutational Analysis of Bacteriophage T4 RNA Ligase 1. Journal of Biological Chemistry, 278(32), 29454-29462. doi:10.1074/jbc.m304320200
Amitsur, M., Levitz, R., & Kaufmann, G. (1987). Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. The EMBO Journal, 6(8), 2499-2503. doi:10.1002/j.1460-2075.1987.tb02532.x
[+]
Silber, R., Malathi, V. G., & Hurwitz, J. (1972). Purification and Properties of Bacteriophage T4-Induced RNA Ligase. Proceedings of the National Academy of Sciences, 69(10), 3009-3013. doi:10.1073/pnas.69.10.3009
Wang, L. K., Ho, C. K., Pei, Y., & Shuman, S. (2003). Mutational Analysis of Bacteriophage T4 RNA Ligase 1. Journal of Biological Chemistry, 278(32), 29454-29462. doi:10.1074/jbc.m304320200
Amitsur, M., Levitz, R., & Kaufmann, G. (1987). Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. The EMBO Journal, 6(8), 2499-2503. doi:10.1002/j.1460-2075.1987.tb02532.x
Shuman, S., & Lima, C. D. (2004). The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Current Opinion in Structural Biology, 14(6), 757-764. doi:10.1016/j.sbi.2004.10.006
Abelson, J., Trotta, C. R., & Li, H. (1998). tRNA Splicing. Journal of Biological Chemistry, 273(21), 12685-12688. doi:10.1074/jbc.273.21.12685
Englert, M. (2005). Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Research, 33(1), 388-399. doi:10.1093/nar/gki174
WANG, L. K. (2005). Structure-function analysis of yeast tRNA ligase. RNA, 11(6), 966-975. doi:10.1261/rna.2170305
Ho, C. K., & Shuman, S. (2002). Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proceedings of the National Academy of Sciences, 99(20), 12709-12714. doi:10.1073/pnas.192184699
Nandakumar, J., Ho, C. K., Lima, C. D., & Shuman, S. (2004). RNA Substrate Specificity and Structure-guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2. Journal of Biological Chemistry, 279(30), 31337-31347. doi:10.1074/jbc.m402394200
Englert, M., Sheppard, K., Aslanian, A., Yates, J. R., & Soll, D. (2011). Archaeal 3’-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proceedings of the National Academy of Sciences, 108(4), 1290-1295. doi:10.1073/pnas.1018307108
Tanaka, N., Meineke, B., & Shuman, S. (2011). RtcB, a Novel RNA Ligase, Can Catalyze tRNA Splicing andHAC1mRNA Splicingin Vivo. Journal of Biological Chemistry, 286(35), 30253-30257. doi:10.1074/jbc.c111.274597
Tanaka, N., & Shuman, S. (2011). RtcB Is the RNA Ligase Component of anEscherichia coliRNA Repair Operon. Journal of Biological Chemistry, 286(10), 7727-7731. doi:10.1074/jbc.c111.219022
Greer, C. L., Javor, B., & Abelson, J. (1983). RNA ligase in bacteria: Formation of a 2′,5′ linkage by an E. coli extract. Cell, 33(3), 899-906. doi:10.1016/0092-8674(83)90032-6
Arn, E. A., & Abelson, J. N. (1996). The 2′-5′ RNA Ligase ofEscherichia coli. Journal of Biological Chemistry, 271(49), 31145-31153. doi:10.1074/jbc.271.49.31145
Kato, M., Shirouzu, M., Terada, T., Yamaguchi, H., Murayama, K., Sakai, H., … Yokoyama, S. (2003). Crystal Structure of the 2′-5′ RNA Ligase from Thermus thermophilus HB8. Journal of Molecular Biology, 329(5), 903-911. doi:10.1016/s0022-2836(03)00448-0
Rehse, P. H., & Tahirov, T. H. (2005). Structure of a putative 2′-5′ RNA ligase fromPyrococcus horikoshii. Acta Crystallographica Section D Biological Crystallography, 61(9), 1207-1212. doi:10.1107/s0907444905017841
Conti, M., & Beavo, J. (2007). Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annual Review of Biochemistry, 76(1), 481-511. doi:10.1146/annurev.biochem.76.060305.150444
Daròs, J.-A., Elena, S. F., & Flores, R. (2006). Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO reports, 7(6), 593-598. doi:10.1038/sj.embor.7400706
Flores R, Owens RA. Viroids. In Encyclopedia of Virology (Mahy, B.W.J. & Van Regenmortel M.H.V., eds), pp. 332-342, Elsevier, Oxford. 2008.
Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.x
Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927
Branch, A., & Robertson, H. (1984). A replication cycle for viroids and other small infectious RNA’s. Science, 223(4635), 450-455. doi:10.1126/science.6197756
Daros, J. A., Marcos, J. F., Hernandez, C., & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences, 91(26), 12813-12817. doi:10.1073/pnas.91.26.12813
Gas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182
Gas, M.-E., Molina-Serrano, D., Hernandez, C., Flores, R., & Daros, J.-A. (2008). Monomeric Linear RNA of Citrus Exocortis Viroid Resulting from Processing In Vivo Has 5’-Phosphomonoester and 3’-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 82(20), 10321-10325. doi:10.1128/jvi.01229-08
Flores, R., Daròs, J.-A., & Hernández, C. (2000). Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 271-323. doi:10.1016/s0065-3527(00)55006-4
Fadda, Z., Daros, J. A., Fagoaga, C., Flores, R., & Duran-Vila, N. (2003). Eggplant Latent Viroid, the Candidate Type Species for a New Genus within the Family Avsunviroidae (Hammerhead Viroids). Journal of Virology, 77(11), 6528-6532. doi:10.1128/jvi.77.11.6528-6532.2003
Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627
PRODY, G. A., BAKOS, J. T., BUZAYAN, J. M., SCHNEIDER, I. R., & BRUENING, G. (1986). Autolytic Processing of Dimeric Plant Virus Satellite RNA. Science, 231(4745), 1577-1580. doi:10.1126/science.231.4745.1577
Daros, J.-A. (2002). A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. The EMBO Journal, 21(4), 749-759. doi:10.1093/emboj/21.4.749
Martinez, F., Marques, J., Salvador, M. L., & Daros, J.-A. (2009). Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast. Journal of General Virology, 90(12), 3057-3065. doi:10.1099/vir.0.013425-0
Makino, S., Sawasaki, T., Endo, Y., & Takai, K. (2005). Purification and sequence determination of an RNA ligase from wheat embryos. Nucleic Acids Symposium Series, 49(1), 319-320. doi:10.1093/nass/49.1.319
Englert, M., Latz, A., Becker, D., Gimple, O., Beier, H., & Akama, K. (2007). Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie, 89(11), 1351-1365. doi:10.1016/j.biochi.2007.06.014
Pascal, J. M. (2008). DNA and RNA ligases: structural variations and shared mechanisms. Current Opinion in Structural Biology, 18(1), 96-105. doi:10.1016/j.sbi.2007.12.008
Kjems, J., & Garrett, R. A. (1988). Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium desulfurococcus mobilis. Cell, 54(5), 693-703. doi:10.1016/s0092-8674(88)80014-x
Gomes, I., & Gupta, R. (1997). RNA Splicing Ligase Activity in the ArchaeonHaloferax volcanii. Biochemical and Biophysical Research Communications, 237(3), 588-594. doi:10.1006/bbrc.1997.7193
Wu, Y.-Q., Hohn, B., & Ziemienowicz, A. (2001). Plant Molecular Biology, 46(2), 161-170. doi:10.1023/a:1010679901911
Marcos, J. F., & Flores, R. (1993). The 5’ end Generated in the in vitro Self-Cleavage Reaction of Avocado Sunblotch Viroid RNAs is Present in Naturally Occurring Linear Viroid Molecules. Journal of General Virology, 74(5), 907-910. doi:10.1099/0022-1317-74-5-907
Cote, F., Levesque, D., & Perreault, J.-P. (2001). Natural 2’,5’-Phosphodiester Bonds Found at the Ligation Sites of Peach Latent Mosaic Viroid. Journal of Virology, 75(1), 19-25. doi:10.1128/jvi.75.1.19-25.2001
Côté, F., & Perreault, J.-P. (1997). Peach latent mosaic viroid is locked by a 2′,5′-phosphodiester bond produced by in vitro self-ligation 1 1Edited by D. E. Draper. Journal of Molecular Biology, 273(3), 533-543. doi:10.1006/jmbi.1997.1355
Meineke, B., Schwer, B., Schaffrath, R., & Shuman, S. (2010). Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Research, 39(2), 687-700. doi:10.1093/nar/gkq831
Navarro, J.-A., Daròs, J.-A., & Flores, R. (1999). Complexes Containing Both Polarity Strands of Avocado Sunblotch Viroid: Identification in Chloroplasts and Characterization. Virology, 253(1), 77-85. doi:10.1006/viro.1998.9497
[-]