- -

A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2 '-5 ' RNA ligase

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2 '-5 ' RNA ligase

Show simple item record

Files in this item

dc.contributor.author Molina Serrano, Diego es_ES
dc.contributor.author Marques Signes, Jorge es_ES
dc.contributor.author Nohales Zafra, Maria Angeles es_ES
dc.contributor.author Flores Pedauye, Ricardo es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.date.accessioned 2017-06-09T11:08:34Z
dc.date.available 2017-06-09T11:08:34Z
dc.date.issued 2012-03
dc.identifier.issn 1547-6286
dc.identifier.uri http://hdl.handle.net/10251/82649
dc.description.abstract [EN] Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown. es_ES
dc.description.sponsorship This work was supported by grants BIO2008-01986 and BFU2008-03154 from Ministerio de Ciencia e Innovacion (MICINN) (Spain) and BFU2005-06808 from Ministerio de Educacion y Ciencia (MEC) (Spain). D.M.S. was the recipient of a predoctoral fellowship from Ministerio de Ciencia y Tecnologia (Spain), and J.M. and M.A.N. from MEC. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation Ministerio de Ciencia e Innovación, Spain [BIO2008-01986] [BFU2008-03154] es_ES
dc.relation Ministerio de Educación y Ciencia, Spain [BFU2005-06808] es_ES
dc.relation.ispartof RNA Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject RNA ligase es_ES
dc.subject 2'-phosphodiester bond es_ES
dc.subject 5'-phosphodiester bond es_ES
dc.subject Circular RNA es_ES
dc.subject Bacterial and archaeal 2 '-5 ' RNA ligase es_ES
dc.subject V es_ES
dc.title A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2 '-5 ' RNA ligase es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4161/rna.19218
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Molina Serrano, D.; Marques Signes, J.; Nohales Zafra, MA.; Flores Pedauye, R.; Daros Arnau, JA. (2012). A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2 '-5 ' RNA ligase. RNA Biology. 9(3):326-333. doi:10.4161/rna.19218 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://doi.org/10.4161/rna.19218 es_ES
dc.description.upvformatpinicio 326 es_ES
dc.description.upvformatpfin 333 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 232562 es_ES
dc.identifier.pmid 22336712
dc.relation.references Silber, R., Malathi, V. G., & Hurwitz, J. (1972). Purification and Properties of Bacteriophage T4-Induced RNA Ligase. Proceedings of the National Academy of Sciences, 69(10), 3009-3013. doi:10.1073/pnas.69.10.3009 es_ES
dc.relation.references Wang, L. K., Ho, C. K., Pei, Y., & Shuman, S. (2003). Mutational Analysis of Bacteriophage T4 RNA Ligase 1. Journal of Biological Chemistry, 278(32), 29454-29462. doi:10.1074/jbc.m304320200 es_ES
dc.relation.references Amitsur, M., Levitz, R., & Kaufmann, G. (1987). Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. The EMBO Journal, 6(8), 2499-2503. doi:10.1002/j.1460-2075.1987.tb02532.x es_ES
dc.relation.references Shuman, S., & Lima, C. D. (2004). The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Current Opinion in Structural Biology, 14(6), 757-764. doi:10.1016/j.sbi.2004.10.006 es_ES
dc.relation.references Abelson, J., Trotta, C. R., & Li, H. (1998). tRNA Splicing. Journal of Biological Chemistry, 273(21), 12685-12688. doi:10.1074/jbc.273.21.12685 es_ES
dc.relation.references Englert, M. (2005). Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Research, 33(1), 388-399. doi:10.1093/nar/gki174 es_ES
dc.relation.references WANG, L. K. (2005). Structure-function analysis of yeast tRNA ligase. RNA, 11(6), 966-975. doi:10.1261/rna.2170305 es_ES
dc.relation.references Ho, C. K., & Shuman, S. (2002). Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proceedings of the National Academy of Sciences, 99(20), 12709-12714. doi:10.1073/pnas.192184699 es_ES
dc.relation.references Nandakumar, J., Ho, C. K., Lima, C. D., & Shuman, S. (2004). RNA Substrate Specificity and Structure-guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2. Journal of Biological Chemistry, 279(30), 31337-31347. doi:10.1074/jbc.m402394200 es_ES
dc.relation.references Englert, M., Sheppard, K., Aslanian, A., Yates, J. R., & Soll, D. (2011). Archaeal 3’-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proceedings of the National Academy of Sciences, 108(4), 1290-1295. doi:10.1073/pnas.1018307108 es_ES
dc.relation.references Tanaka, N., Meineke, B., & Shuman, S. (2011). RtcB, a Novel RNA Ligase, Can Catalyze tRNA Splicing andHAC1mRNA Splicingin Vivo. Journal of Biological Chemistry, 286(35), 30253-30257. doi:10.1074/jbc.c111.274597 es_ES
dc.relation.references Tanaka, N., & Shuman, S. (2011). RtcB Is the RNA Ligase Component of anEscherichia coliRNA Repair Operon. Journal of Biological Chemistry, 286(10), 7727-7731. doi:10.1074/jbc.c111.219022 es_ES
dc.relation.references Greer, C. L., Javor, B., & Abelson, J. (1983). RNA ligase in bacteria: Formation of a 2′,5′ linkage by an E. coli extract. Cell, 33(3), 899-906. doi:10.1016/0092-8674(83)90032-6 es_ES
dc.relation.references Arn, E. A., & Abelson, J. N. (1996). The 2′-5′ RNA Ligase ofEscherichia coli. Journal of Biological Chemistry, 271(49), 31145-31153. doi:10.1074/jbc.271.49.31145 es_ES
dc.relation.references Kato, M., Shirouzu, M., Terada, T., Yamaguchi, H., Murayama, K., Sakai, H., … Yokoyama, S. (2003). Crystal Structure of the 2′-5′ RNA Ligase from Thermus thermophilus HB8. Journal of Molecular Biology, 329(5), 903-911. doi:10.1016/s0022-2836(03)00448-0 es_ES
dc.relation.references Rehse, P. H., & Tahirov, T. H. (2005). Structure of a putative 2′-5′ RNA ligase fromPyrococcus horikoshii. Acta Crystallographica Section D Biological Crystallography, 61(9), 1207-1212. doi:10.1107/s0907444905017841 es_ES
dc.relation.references Conti, M., & Beavo, J. (2007). Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annual Review of Biochemistry, 76(1), 481-511. doi:10.1146/annurev.biochem.76.060305.150444 es_ES
dc.relation.references Daròs, J.-A., Elena, S. F., & Flores, R. (2006). Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO reports, 7(6), 593-598. doi:10.1038/sj.embor.7400706 es_ES
dc.relation.references Flores R, Owens RA. Viroids. In Encyclopedia of Virology (Mahy, B.W.J. & Van Regenmortel M.H.V., eds), pp. 332-342, Elsevier, Oxford. 2008. es_ES
dc.relation.references Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.x es_ES
dc.relation.references Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 es_ES
dc.relation.references Branch, A., & Robertson, H. (1984). A replication cycle for viroids and other small infectious RNA’s. Science, 223(4635), 450-455. doi:10.1126/science.6197756 es_ES
dc.relation.references Daros, J. A., Marcos, J. F., Hernandez, C., & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences, 91(26), 12813-12817. doi:10.1073/pnas.91.26.12813 es_ES
dc.relation.references Gas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182 es_ES
dc.relation.references Gas, M.-E., Molina-Serrano, D., Hernandez, C., Flores, R., & Daros, J.-A. (2008). Monomeric Linear RNA of Citrus Exocortis Viroid Resulting from Processing In Vivo Has 5’-Phosphomonoester and 3’-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 82(20), 10321-10325. doi:10.1128/jvi.01229-08 es_ES
dc.relation.references Flores, R., Daròs, J.-A., & Hernández, C. (2000). Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 271-323. doi:10.1016/s0065-3527(00)55006-4 es_ES
dc.relation.references Fadda, Z., Daros, J. A., Fagoaga, C., Flores, R., & Duran-Vila, N. (2003). Eggplant Latent Viroid, the Candidate Type Species for a New Genus within the Family Avsunviroidae (Hammerhead Viroids). Journal of Virology, 77(11), 6528-6532. doi:10.1128/jvi.77.11.6528-6532.2003 es_ES
dc.relation.references Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627 es_ES
dc.relation.references PRODY, G. A., BAKOS, J. T., BUZAYAN, J. M., SCHNEIDER, I. R., & BRUENING, G. (1986). Autolytic Processing of Dimeric Plant Virus Satellite RNA. Science, 231(4745), 1577-1580. doi:10.1126/science.231.4745.1577 es_ES
dc.relation.references Daros, J.-A. (2002). A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. The EMBO Journal, 21(4), 749-759. doi:10.1093/emboj/21.4.749 es_ES
dc.relation.references Martinez, F., Marques, J., Salvador, M. L., & Daros, J.-A. (2009). Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast. Journal of General Virology, 90(12), 3057-3065. doi:10.1099/vir.0.013425-0 es_ES
dc.relation.references Makino, S., Sawasaki, T., Endo, Y., & Takai, K. (2005). Purification and sequence determination of an RNA ligase from wheat embryos. Nucleic Acids Symposium Series, 49(1), 319-320. doi:10.1093/nass/49.1.319 es_ES
dc.relation.references Englert, M., Latz, A., Becker, D., Gimple, O., Beier, H., & Akama, K. (2007). Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie, 89(11), 1351-1365. doi:10.1016/j.biochi.2007.06.014 es_ES
dc.relation.references Pascal, J. M. (2008). DNA and RNA ligases: structural variations and shared mechanisms. Current Opinion in Structural Biology, 18(1), 96-105. doi:10.1016/j.sbi.2007.12.008 es_ES
dc.relation.references Kjems, J., & Garrett, R. A. (1988). Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium desulfurococcus mobilis. Cell, 54(5), 693-703. doi:10.1016/s0092-8674(88)80014-x es_ES
dc.relation.references Gomes, I., & Gupta, R. (1997). RNA Splicing Ligase Activity in the ArchaeonHaloferax volcanii. Biochemical and Biophysical Research Communications, 237(3), 588-594. doi:10.1006/bbrc.1997.7193 es_ES
dc.relation.references Wu, Y.-Q., Hohn, B., & Ziemienowicz, A. (2001). Plant Molecular Biology, 46(2), 161-170. doi:10.1023/a:1010679901911 es_ES
dc.relation.references Marcos, J. F., & Flores, R. (1993). The 5’ end Generated in the in vitro Self-Cleavage Reaction of Avocado Sunblotch Viroid RNAs is Present in Naturally Occurring Linear Viroid Molecules. Journal of General Virology, 74(5), 907-910. doi:10.1099/0022-1317-74-5-907 es_ES
dc.relation.references Cote, F., Levesque, D., & Perreault, J.-P. (2001). Natural 2’,5’-Phosphodiester Bonds Found at the Ligation Sites of Peach Latent Mosaic Viroid. Journal of Virology, 75(1), 19-25. doi:10.1128/jvi.75.1.19-25.2001 es_ES
dc.relation.references Côté, F., & Perreault, J.-P. (1997). Peach latent mosaic viroid is locked by a 2′,5′-phosphodiester bond produced by in vitro self-ligation 1 1Edited by D. E. Draper. Journal of Molecular Biology, 273(3), 533-543. doi:10.1006/jmbi.1997.1355 es_ES
dc.relation.references Meineke, B., Schwer, B., Schaffrath, R., & Shuman, S. (2010). Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Research, 39(2), 687-700. doi:10.1093/nar/gkq831 es_ES
dc.relation.references Navarro, J.-A., Daròs, J.-A., & Flores, R. (1999). Complexes Containing Both Polarity Strands of Avocado Sunblotch Viroid: Identification in Chloroplasts and Characterization. Virology, 253(1), 77-85. doi:10.1006/viro.1998.9497 es_ES


This item appears in the following Collection(s)

Show simple item record