Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2016). Dynamics of a multipoint variant of Chebyshev-Halley's family. Applied Mathematics and Computation. 284:195-208. https://doi.org/10.1016/j.amc.2016.03.009
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82758
Title:
|
Dynamics of a multipoint variant of Chebyshev-Halley's family
|
Author:
|
Campos, Beatriz
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
Vindel, Pura
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
|
Issued date:
|
|
Abstract:
|
In this paper, a complex dynamical study of a parametric Chebyshev-Halley type family of iterative methods on quadratic polynomial is presented. The stability of the fixed points is analyzed in terms of the parameter of ...[+]
In this paper, a complex dynamical study of a parametric Chebyshev-Halley type family of iterative methods on quadratic polynomial is presented. The stability of the fixed points is analyzed in terms of the parameter of the family. We also calculate the critical points building their corresponding parameter planes which allow us to analyze the qualitative behavior of this family. Moreover, we locate some dynamical planes showing different pathological aspects of this family. (C) 2016 Elsevier Inc. All rights reserved.
[-]
|
Subjects:
|
Iterative methods
,
Complex dynamics
,
Chebyshev–Halley’s family
,
Bifurcations
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Applied Mathematics and Computation. (issn:
0096-3003
)
|
DOI:
|
10.1016/j.amc.2016.03.009
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.amc.2016.03.009
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES/
|
Thanks:
|
The authors thank to the anonymous referees for their suggestions to improve the readability of the paper. This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P.
|
Type:
|
Artículo
|