- -

Z-permutable subgroups of finite groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Z-permutable subgroups of finite groups

Show full item record

Heliel, A.; Ballester Bolinches, A.; Esteban Romero, R.; Almestady, M. (2016). Z-permutable subgroups of finite groups. Monatshefte für Mathematik. 179(4):523-534. doi:10.1007/s00605-015-0756-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82773

Files in this item

Item Metadata

Title: Z-permutable subgroups of finite groups
Author:
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
Let Z be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called Z-permutable if H permutes with all members ...[+]
Subjects: Finite group , P-soluble group , P-supersoluble , Z-permutable subgroup , Subnormal subgroup
Copyrigths: Reserva de todos los derechos
Source:
Monatshefte für Mathematik. (issn: 0026-9255 )
DOI: 10.1007/s00605-015-0756-1
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00605-015-0756-1
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-015-0756-1
Thanks:
This Project was funded by the Deanship of Scientific Research (DSR), at King Abdulaziz University, Jeddah, under grant no. (1/31/RG). The authors, therefore, acknowledge with thanks DSR technical and financial support. ...[+]
Type: Artículo

References

Asaad, M., Heliel, A.A.: On permutable subgroups of finite groups. Arch. Math. (Basel) 80, 113–118 (2003). doi: 10.1007/s00013-003-0782-4

Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups. Rev. Mat. Iberoam. 23(1), 127–142 (2007). doi: 10.4171/RMI/488

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups, de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612 [+]
Asaad, M., Heliel, A.A.: On permutable subgroups of finite groups. Arch. Math. (Basel) 80, 113–118 (2003). doi: 10.1007/s00013-003-0782-4

Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups. Rev. Mat. Iberoam. 23(1), 127–142 (2007). doi: 10.4171/RMI/488

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups, de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612

Deskins, W.E.: On quasinormal subgroups of finite groups. Math. Z. 82, 125–132 (1963). doi: 10.1007/BF01111801

Doerk, K.: Eine Bemerkung über das Reduzieren von Hallgruppen in endlichen auflösbaren Gruppen. Arch. Math. (Basel) 60, 505–507 (1993). doi: 10.1007/BF01236072

Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin, New York (1992). doi: 10.1515/9783110870138

Hall, P.: On the Sylow systems of a soluble group. Proc. Lond. Math. Soc. 2(43), 316–323 (1937). doi: 10.1112/plms/s2-43.4.316

Heliel, A.A., Al-Gafri, T.M.: On conjugate- $${\mathfrak{{Z}}}$$ Z -permutable subgroups of finite groups. J. Algebra Appl. 12(8), 1350060 (2013). doi: 10.1142/S0219498813500606 (14 pages)

Heliel, A.A., Li, X., Li, Y.: On $${\mathfrak{{Z}}}$$ Z -permutability of minimal subgroups of finite groups. Arch. Math. (Basel) 83, 9–16 (2004). doi: 10.1007/s00013-004-1014-2

Huppert, B.: Endliche Gruppen I, Grund. Math. Wiss., vol. 134. Springer, Berlin, Heidelberg, New York (1967)

Kegel, O.H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78, 205–221 (1962). doi: 10.1007/BF01195169

Li, X., Li, Y., Wang, L.: $${\mathfrak{{Z}}}$$ Z -permutable subgroups and $$p$$ p -nilpotency of finite groups II. Israel J. Math. 164, 75–85 (2008). doi: 10.1007/s11856-008-0021-6

Li, Y., Heliel, A.A.: On permutable subgroups of finite groups II. Commun. Algebra 33(9), 3353–3358 (2005). doi: 10.1081/AGB-200058541

Li, Y., Li, X.: $$\mathfrak{Z}$$ Z -permutable subgroups and $$p$$ p -nilpotence of finite groups. J. Pure Appl. Algebra 202, 72–81 (2005). doi: 10.1016/j.jpaa.2005.01.007

Li, Y., Wang, L., Wang, Y.: Finite groups with some $${\mathfrak{{Z}}}$$ Z -permutable subgroups. Glasgow Math. J. 52, 145–150 (2010). doi: 10.1017/S0017089509990231

Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Russ. Math. Surveys 66(5), 829–870 (2011). doi: 10.1070/RM2011v066n05ABEH004762

Wang, L.F., Wang, Y.M.: A remark on $${\mathfrak{{Z}}}$$ Z -permutability of finite groups. Acta Math. Sinica 23(11), 1985–1990 (2007). doi: 10.1007/s10114-005-0906-9

[-]

This item appears in the following Collection(s)

Show full item record