- -

Linear chaos for the Quick-Thinking-Driver model

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Linear chaos for the Quick-Thinking-Driver model

Show full item record

Conejero, JA.; Murillo Arcila, M.; Seoane-Sepúlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. doi:10.1007/s00233-015-9704-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82775

Files in this item

Item Metadata

Title: Linear chaos for the Quick-Thinking-Driver model
Author:
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google ...[+]
Subjects: Death model , Birth-and-death problem , Car-following , Quick-Thinking-Driver , Devaney chaos , Distributional chaos , C-0-semigroups
Copyrigths: Reserva de todos los derechos
Source:
Semigroup Forum. (issn: 0037-1912 )
DOI: 10.1007/s00233-015-9704-6
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00233-015-9704-6
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6
Thanks:
The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P.
Type: Artículo

References

Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)

Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001)

Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002) [+]
Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)

Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001)

Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)

Banasiak, J., Lachowicz, M., Moszyński, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003)

Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005)

Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011)

Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)

Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012)

Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)

Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)

Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009)

Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958)

Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973)

CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014

Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015)

DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challenge

de Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000)

Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)

El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006)

El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008)

El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009)

Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt R

Godefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)

Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934)

Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935)

Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)

Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959)

Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953)

Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005)

Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005)

Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009)

Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953)

[-]

This item appears in the following Collection(s)

Show full item record