- -

Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ribal Sanchis, Francisco Javier es_ES
dc.contributor.author Ramírez Sanz, Clara es_ES
dc.contributor.author Estruch Guitart, Vicente es_ES
dc.contributor.author Clemente Polo, Gabriela es_ES
dc.contributor.author Sanjuán Pellicer, María Nieves es_ES
dc.coverage.spatial east=-0.3762881000000107; north=39.4699075; name= Valencia (província), Espanya es_ES
dc.date.accessioned 2017-06-14T07:28:47Z
dc.date.available 2017-06-14T07:28:47Z
dc.date.issued 2017-04
dc.identifier.issn 0948-3349
dc.identifier.uri http://hdl.handle.net/10251/82814
dc.description.abstract [EN] Purpose Taking into account the large area of citrus in Spain and the impacts generated by agriculture, reducing the environmental impact of this crop represents an important goal. This study attempts to compare the environmental impact of two citrus cropping systems, organic and conventional, in the region of Valencia (Spain), and to assess the variability within both farming systems in order to highlight the influence of management practices on the environmental performance. Methods A survey was carried out on citrus farmers, 145 corresponding to organic production and 122 to conventional. Life cycle assessment (LCA) was used to estimate the environmental impacts of farms and the contribution of each production stage to impacts. Two functional units (FUs), massand area-based, were chosen. The variability and confidence intervals of the average impact results were assessed by means of a bootstrap technique. Finally, a k-means cluster analysis was performed to identify groups of farms with comparable impact levels . Results and discussion The mean impact values of the conventional farm sample were higher than those of the organic farms, when using 1 ha year−1 as FU, whereas for the FU of 1 kg no differences were found for some impact categories. Most of the impact results were also observed to be highly variable. The distribution of the mean after the bootstrap confirmed both the variability of the impacts and the differences between the farming systems. The cluster analysis determined two groups via their impact categories. Cluster-1, which showed higher impacts, was made up of part of the conventional farms while cluster-2 included the remaining conventional farms and all the organic ones. No difference in yield was found between the conventional farms of both clusters. Conclusions Bootstrapped LCA offers the ability to assess the variability of the impacts, regardless of the sample size and the non-normal impact distributions. The cluster analysis shows that conventional farms can attain similar impacts than the organic ones, while maintaining the yield. FU selection is crucial, since a mass-based FU reduces the difference in the environmental performance between conventional and organic farms. To attain a more sustainable citrus farming, a careful selection of the management practices is needed es_ES
dc.description.sponsorship The authors gratefully acknowledge the Spanish Ministerio de Economia y Competitividad for the financial support under the project CTM2013-47,340-R and the Generalitat Valenciana for the financial support under the project PROMETEOII/2014/005. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal of Life Cycle Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bias-corrected interval (BCa) es_ES
dc.subject Citrus Conventional farming es_ES
dc.subject LCA es_ES
dc.subject Cluster analysis es_ES
dc.subject Non-parametric bootstrap es_ES
dc.subject Organic farming es_ES
dc.subject Variability es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11367-016-1048-2
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2013-47340-R/ES/DISEÑO DE UN INDICADOR DE SOSTENIBILIDAD DEL CICLO DE VIDA PARA LOS SISTEMAS AGRARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F005/ES/Alimentos saludables y competitivos: intensificación de procesos de obtención%2Fpreservación de compuestos bioactivos. Secado e inactivación microbiana/enzimática asistida por ultrasonidos/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Ribal Sanchis, FJ.; Ramírez Sanz, C.; Estruch Guitart, V.; Clemente Polo, G.; Sanjuán Pellicer, MN. (2017). Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). International Journal of Life Cycle Assessment. 22(4):571-586. https://doi.org/10.1007/s11367-016-1048-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11367-016-1048-2 es_ES
dc.description.upvformatpinicio 571 es_ES
dc.description.upvformatpfin 586 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 317403 es_ES
dc.identifier.eissn 1614-7502
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Audsley E (coordinator) et al (1997) Harmonisation of environmental life cycle assessment for agriculture. Final report. Concerted Action AIR3-CT94-2028, Silsoe Research Inst., Bedford es_ES
dc.description.references Basset-Mens C, Van Der Werf HM, Durand P, Leterme P (2006) Implications of uncertainty and variability in the life cycle assessment of pig production systems (7 pp). Int J Life Cycle Assess 11(5):298–304 es_ES
dc.description.references Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of Italian citrus-based products. Environ Manag 43:707–724 es_ES
dc.description.references Beccali M, Cellura M, Iudicello M, Mistretta M (2010) Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios. J Environ Manag 91(7):1415–1428 es_ES
dc.description.references Berthoud A, Maupu P, Huet C, Poupart A (2011) Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural practices databases and USEtox model. Int J Life Cycle Assess 16(8):841–847 es_ES
dc.description.references Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18(2):340–361 es_ES
dc.description.references Brady NC, Weil RR (2008) Soil phosphorus and potassium, Ch 14. In: The nature and properties of soils (14th edition). Pearson Prentice Hall, pp 594–638 es_ES
dc.description.references Chen X, Corson MS (2014) Influence of emission-factor uncertainty and farm-characteristic variability in LCA estimates of environmental impacts of French dairy farms. J Clean Prod 81:150–157 es_ES
dc.description.references Chen X, Samson E, Tocqueville A, Aubin J (2015) Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J Clean Prod 87:87–95 es_ES
dc.description.references Chernick MR, Labudde RA (2011) An introduction to bootstrap methods with applications to R. J Wiley and Sons, USA es_ES
dc.description.references Coltro L, Mourad AL, Kletecke RM, Mendonça TA, Germer SP (2009) Assessing the environmental profile of orange production in Brazil. Int J Life Cycle Assess 14(7):656–664 es_ES
dc.description.references Efron B (1979) Bootstrap methods—another look at the jackknife. Ann Stat 7:1–26 es_ES
dc.description.references EMEP/EEA. European Environment Agency (2013) Air pollutant emission inventory guidebook. Technical report No 12/2013. Luxembourg (Luxembourg) 2013. ISBN 978-92-9213-403-7 es_ES
dc.description.references Escobar N, Ribal J, Clemente G, Sanjuán N (2014) Consequential LCA of two alternative systems for biodiesel consumption in Spain, considering uncertainty. J Clean Prod 79:61–73 es_ES
dc.description.references FAOSTAT (2012) Food and Agriculture Organization of the United Nations Statistics Division. Available at: http://faostat3.fao.org/home/E . accessed 12 May 2015 es_ES
dc.description.references Filzmoser P, Maronna R, Werner M (2008) Outlier identification in high dimensions. Comput Stat Data Anal 52:1694–1711 es_ES
dc.description.references Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21 es_ES
dc.description.references Frischknecht R, Althaus HJ, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 12:7–17 es_ES
dc.description.references Geisler G, Hellweg S, Hungerbühler K (2005) Uncertainty analysis in life cycle assessment (LCA): case study on plant-protection products and implications for decision making. Int J Life Cycle Assess 10(3):184–192 es_ES
dc.description.references Hayashi K (2011) Assessing management influence on environmental impacts under uncertainty: a case study of paddy rice production in Japan. In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer Netherlands, pp 331–340 es_ES
dc.description.references Hayashi K, Makino N, Shobatake K, Hokazono S (2014) Influence of scenario uncertainty in agricultural inputs on life cycle greenhouse gas emissions from agricultural production systems: the case of chemical fertilizers in Japan. J Clean Prod 73:109–115 es_ES
dc.description.references Hesterberg T, Monaghan S, Moore DS, Clipson A, Epstein R (2003) Bootstrap methods and permutation tests. WH Freeman and Company, New York es_ES
dc.description.references Hischier R, Althaus H-J, Bauer C, Doka G, Frischknecht R, Jungbluth N, Nemecek T, Simons A, Stucki M, Sutter J, Tuchschmid M (2010) Documentation of changes implemented in ecoinvent Data v2.1 and v2.2. Final report ecoinvent data v2.2 No. 16. Swiss Centre for Life Cycle Inventories, Dübendorf es_ES
dc.description.references Hospido A, Milà i Canals L, McLaren S, Truninger M, Edwards-Jones G, Clift R (2009) The role of seasonality in lettuce consumption: a case study of environmental and social aspects. Int J Life Cycle Assess 14(5):381–391 es_ES
dc.description.references Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Part 1. A general framework for the application of uncertainty and variability in life-cycle assessment. Int J Life Cycle Assess 3(5):273–280 es_ES
dc.description.references IPCC, Intergovernmental Panel on Climate Change (2006) IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land uses. Available at http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html . accessed 15 May 2014 es_ES
dc.description.references ISO (2006) International Organization for Standardization. ISO 14040. International standard in environmental management. Life cycle assessment: principles and framework. ISO, Geneva es_ES
dc.description.references Johnson R. (1992) Applied multivariate statistical analysis. Prentice Hall es_ES
dc.description.references Juraske R, Sanjuán N (2011) Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain. Chemosphere 82(7):956–962 es_ES
dc.description.references Juste F (2006) La mecanización del cultivo de los cítricos como forma de reducción de costes. Rev Comunidad Valenciana Agraria 5:23–26 es_ES
dc.description.references Kelley K (2005) The effects of nonnormal distributions on confidence intervals around the standardized mean difference: bootstrap and parametric confidence intervals. Educ Psychol Meas 64(1):51–69 es_ES
dc.description.references Knudsen MT, de Almeida GF, Langer V, de Abreu LS, Halberg N (2011) Environmental assessment of organic juice imported to Denmark: a case study on oranges (Citrus sinensis) from Brazil. Org Agric 1(3):167–185 es_ES
dc.description.references Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Social Psychol es_ES
dc.description.references MAAM (2014) Balance del nitrógeno en la agricultura española (Año 2012) Dirección General de producciones y mercados agrarios. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid. Available at: http://www.magrama.gob.es/es/agricultura/temas/medios-de-produccion/BNAE2012_Metodolog%C3%ADa-Resultados_tcm7-360230.pdf . Accessed 25 Aug 2015 es_ES
dc.description.references MAAM (2014) Anuario de Estadística 2013 Ministerio de Agricultura, Alimentación y Medio Ambiente. Available at: http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/default.aspx . Accessed 12 June 2015 es_ES
dc.description.references MAGRAMA (2015) Consulta de hojas de cálculo de costes de maquinaria. Available at http://www.magrama.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-tecnologias-probadas/maquinaria-agricola/hojas-calculo-maqui.aspx#para1 es_ES
dc.description.references Maindonald JH, Braun WJ (2014) DAAG: data analysis and graphics data and functions. R package version 1.20. Available at: http://CRAN.R-project.org/package=DAAG es_ES
dc.description.references Melia P, Petrillo M, Albertelli G, Mandich A, Gatto M (2012) A bootstrap approach to account for uncertainty in egg production methods applied to small fish stocks. Fish Res 117:130–136 es_ES
dc.description.references Milà i Canals LM, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114(2):226–238 es_ES
dc.description.references Mouron P, Nemecek T, Scholz RW, Weber O (2006) Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agric Ecosyt Environ 114:311–322 es_ES
dc.description.references Mutel CL, Pfister S, Hellweg S (2011) GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ Sci Technol 46(2):1096–1103 es_ES
dc.description.references Nemecek T, Kägi T, Blaser S (2007) Life cycle inventories of agricultural production systems. Final report ecoinvent v2.0 No.15. Swiss Centre for Life Cycle Inventories, Dübendorf es_ES
dc.description.references Nielsen PH, Nielsen AM, Weidema BP, Dalgaard R and Halberg N (2003) LCA food data base. Available at: http://www.lcafood.dk es_ES
dc.description.references OCCC, Oficina Catalana de Canvi Climàtic (2013) Guía práctica para el cálculo de emisiones de gases de efecto invernadero (GEI). Generalitat de Catalunya, Catalunya es_ES
dc.description.references Patyk A, Reinhardt G (1997) Düngemittel- Energie- und Stoffstromsbilanzen. Friedr. Vieweg & Sohn Publishers. Braunschweig/Wiesbaden, Germany. ISBN: 3-528-06885-X. es_ES
dc.description.references Pergola M, D’amico M, Celano G, Palese AM, Scuderi A, Di Vita G, Pappalardo G, Inglese P (2013) Sustainability evaluation of Sicily’s lemon and orange production: an energy, economic and environmental analysis. J Environ Manag 128:674–682 es_ES
dc.description.references Ramos S, Vázquez-Rowe I, Artetxe I, Moreira MT, Feijóo G, Zufía J (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the time line delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610 es_ES
dc.description.references Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15(9):927–937 es_ES
dc.description.references Rodríguez C, Ciroth A, Srocka M (2014) The importance of regionalized LCIA in agricultural LCA–new software implementation and case study. In Proc. 9th Int. Conf. Life Cycle Assess Agri-Food Sector, San Francisco, pp 1120–1128 es_ES
dc.description.references Röös E, Sundberg C, Hansson PA (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15(5):478–488 es_ES
dc.description.references Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546 es_ES
dc.description.references Sanjuán N, Úbeda L, Clemente G, Girona F, Mulet A (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agric Resour Gov Ecol 4(2):163–177 es_ES
dc.description.references Stoessel F, Juraske R, Pfister S, Hellweg S (2012) Life cycle inventory and carbon and water footprint of fruits and vegetables: application to a Swiss retailer. Environ Sci Technol 46(6):3253–3262 es_ES
dc.description.references Vakili K, Schmitt E (2014) Finding multivariate outliers with FastPCS. Comput Stat Data Anal 69:55–66 es_ES
dc.description.references Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manag 98:73–83 es_ES
dc.description.references Vinyes E, Gasol CM, Asin L, Alegre S, Muñoz P (2015) Life cycle assessment of multiyear peach production. J Clean Prod 104:68–79 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem