- -

The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell

Show full item record

Rienzo, A.; Pascual-Ahuir Giner, MD.; Proft, MH. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast. 29(6):219-231. doi:10.1002/yea.2905

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82837

Files in this item

Item Metadata

Title: The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different ...[+]
Subjects: Luciferase , Gene expression , Dose-response , Promoter , Saccharomyces cerevisiae
Copyrigths: Cerrado
Source:
Yeast. (issn: 0749-503X )
DOI: 10.1002/yea.2905
Publisher:
Wiley
Publisher version: http://doi.org/10.1002/yea.2905
Thanks:
We thank Takayoshi Kuno for the kind gift of plasmid pGL3, containing the destabilized firefly luciferase gene. This study was supported by the Ministerio de Ciencia e Innovacion (Grant Nos BFU2008-00271 and BFU2011-23326). ...[+]
Type: Artículo

References

Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502

Cormack, B. (1998). Green fluorescent protein as a reporter of transcription and protein localization in fungi. Current Opinion in Microbiology, 1(4), 406-410. doi:10.1016/s1369-5274(98)80057-x

Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526 [+]
Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502

Cormack, B. (1998). Green fluorescent protein as a reporter of transcription and protein localization in fungi. Current Opinion in Microbiology, 1(4), 406-410. doi:10.1016/s1369-5274(98)80057-x

Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526

Gasch, A. P. (2007). Comparative genomics of the environmental stress response in ascomycete fungi. Yeast, 24(11), 961-976. doi:10.1002/yea.1512

Hahn, S., & Young, E. T. (2011). Transcriptional Regulation inSaccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators. Genetics, 189(3), 705-736. doi:10.1534/genetics.111.127019

Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., … Young, R. A. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004), 99-104. doi:10.1038/nature02800

Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710

Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09

Marchler, G., Schüller, C., Adam, G., & Ruis, H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. The EMBO Journal, 12(5), 1997-2003. doi:10.1002/j.1460-2075.1993.tb05849.x

Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046

Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.x

Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:14<1313::aid-yea626>3.0.co;2-o

J. Miraglia, L., J. King, F., & Damoiseaux, R. (2011). Seeing the Light: Luminescent Reporter Gene Assays. Combinatorial Chemistry & High Throughput Screening, 14(8), 648-657. doi:10.2174/138620711796504389

Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909

Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851

Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123

Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016

Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M., & Hohmann, S. (2001). The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 40(5), 1067-1083. doi:10.1046/j.1365-2958.2001.02384.x

Robertson, J. B., & Johnson, C. H. (2011). Luminescence as a Continuous Real-Time Reporter of Promoter Activity in Yeast Undergoing Respiratory Oscillations or Cell Division Rhythms. Yeast Genetic Networks, 63-79. doi:10.1007/978-1-61779-086-7_4

Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105

Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J., & Mager, W. H. (1995). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Molecular and Cellular Biology, 15(11), 6232-6245. doi:10.1128/mcb.15.11.6232

Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015

[-]

This item appears in the following Collection(s)

Show full item record