Mostrar el registro sencillo del ítem
dc.contributor.author | Rienzo, Alessandro | es_ES |
dc.contributor.author | Pascual-Ahuir Giner, María Desamparados | es_ES |
dc.contributor.author | Proft, Markus Hans | es_ES |
dc.date.accessioned | 2017-06-14T11:07:30Z | |
dc.date.available | 2017-06-14T11:07:30Z | |
dc.date.issued | 2012-06 | |
dc.identifier.issn | 0749-503X | |
dc.identifier.uri | http://hdl.handle.net/10251/82837 | |
dc.description.abstract | [EN] A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different experimental conditions in small culture aliquots. This allows the dose-response behaviour of gene expression driven by any yeast promoter to be reported and can be used to quantify important parameters, such as the threshold, sensitivity, response time, maximal activity and synthesis rate for a given stimulus. We applied the luciferase assay to the nutrient-regulated GAL1 promoter and the stress-responsive GRE2 promoter. We find that luciferase expression driven by the GAL1 promoter responds dynamically to growing galactose concentrations, with increasing synthesis rates determined by the light increment in the initial linear phase of activation. In the case of the GRE2 promoter, we demonstrate that the very short-lived version of luciferase used here is an excellent tool to quantitatively describe transient transcriptional activation. The luciferase expression controlled by the GRE2 promoter responds dynamically to a gradual increase of osmotic or oxidative stress stimuli, which is mainly based on the progressive increase of the time the promoter remains active. Finally, we determined the dose-response behaviour of a single transcription factor binding site in a synthetic promoter context, using the stress response element (STRE) as an example. Taken together, the luciferase assay described here is an attractive tool to rapidly and precisely determine and compare kinetic parameters of gene expression. Copyright (c) 2012 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | We thank Takayoshi Kuno for the kind gift of plasmid pGL3, containing the destabilized firefly luciferase gene. This study was supported by the Ministerio de Ciencia e Innovacion (Grant Nos BFU2008-00271 and BFU2011-23326). A.R. is the recipient of an FPI predoctoral fellowship from the Ministerio de Ciencia e Innovacion. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Yeast | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Luciferase | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Dose-response | es_ES |
dc.subject | Promoter | es_ES |
dc.subject | Saccharomyces cerevisiae | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/yea.2905 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2008-00271/ES/RESPUESTA A ESTRES OSMOTICO EN SACCHAROMYCES Y ARABIDOPSIS: REGULACION DE LA CROMATINA Y DE LA ACTIVIDAD MITOCONDRIAL/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Rienzo, A.; Pascual-Ahuir Giner, MD.; Proft, MH. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast. 29(6):219-231. doi:10.1002/yea.2905 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/yea.2905 | es_ES |
dc.description.upvformatpinicio | 219 | es_ES |
dc.description.upvformatpfin | 231 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 233246 | es_ES |
dc.identifier.pmid | 22674776 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502 | es_ES |
dc.description.references | Cormack, B. (1998). Green fluorescent protein as a reporter of transcription and protein localization in fungi. Current Opinion in Microbiology, 1(4), 406-410. doi:10.1016/s1369-5274(98)80057-x | es_ES |
dc.description.references | Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526 | es_ES |
dc.description.references | Gasch, A. P. (2007). Comparative genomics of the environmental stress response in ascomycete fungi. Yeast, 24(11), 961-976. doi:10.1002/yea.1512 | es_ES |
dc.description.references | Hahn, S., & Young, E. T. (2011). Transcriptional Regulation inSaccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators. Genetics, 189(3), 705-736. doi:10.1534/genetics.111.127019 | es_ES |
dc.description.references | Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., … Young, R. A. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004), 99-104. doi:10.1038/nature02800 | es_ES |
dc.description.references | Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710 | es_ES |
dc.description.references | Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09 | es_ES |
dc.description.references | Marchler, G., Schüller, C., Adam, G., & Ruis, H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. The EMBO Journal, 12(5), 1997-2003. doi:10.1002/j.1460-2075.1993.tb05849.x | es_ES |
dc.description.references | Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046 | es_ES |
dc.description.references | Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.x | es_ES |
dc.description.references | Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:14<1313::aid-yea626>3.0.co;2-o | es_ES |
dc.description.references | J. Miraglia, L., J. King, F., & Damoiseaux, R. (2011). Seeing the Light: Luminescent Reporter Gene Assays. Combinatorial Chemistry & High Throughput Screening, 14(8), 648-657. doi:10.2174/138620711796504389 | es_ES |
dc.description.references | Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909 | es_ES |
dc.description.references | Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851 | es_ES |
dc.description.references | Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016 | es_ES |
dc.description.references | Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M., & Hohmann, S. (2001). The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 40(5), 1067-1083. doi:10.1046/j.1365-2958.2001.02384.x | es_ES |
dc.description.references | Robertson, J. B., & Johnson, C. H. (2011). Luminescence as a Continuous Real-Time Reporter of Promoter Activity in Yeast Undergoing Respiratory Oscillations or Cell Division Rhythms. Yeast Genetic Networks, 63-79. doi:10.1007/978-1-61779-086-7_4 | es_ES |
dc.description.references | Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105 | es_ES |
dc.description.references | Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J., & Mager, W. H. (1995). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Molecular and Cellular Biology, 15(11), 6232-6245. doi:10.1128/mcb.15.11.6232 | es_ES |
dc.description.references | Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015 | es_ES |