- -

The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rienzo, Alessandro es_ES
dc.contributor.author Pascual-Ahuir Giner, María Desamparados es_ES
dc.contributor.author Proft, Markus Hans es_ES
dc.date.accessioned 2017-06-14T11:07:30Z
dc.date.available 2017-06-14T11:07:30Z
dc.date.issued 2012-06
dc.identifier.issn 0749-503X
dc.identifier.uri http://hdl.handle.net/10251/82837
dc.description.abstract [EN] A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different experimental conditions in small culture aliquots. This allows the dose-response behaviour of gene expression driven by any yeast promoter to be reported and can be used to quantify important parameters, such as the threshold, sensitivity, response time, maximal activity and synthesis rate for a given stimulus. We applied the luciferase assay to the nutrient-regulated GAL1 promoter and the stress-responsive GRE2 promoter. We find that luciferase expression driven by the GAL1 promoter responds dynamically to growing galactose concentrations, with increasing synthesis rates determined by the light increment in the initial linear phase of activation. In the case of the GRE2 promoter, we demonstrate that the very short-lived version of luciferase used here is an excellent tool to quantitatively describe transient transcriptional activation. The luciferase expression controlled by the GRE2 promoter responds dynamically to a gradual increase of osmotic or oxidative stress stimuli, which is mainly based on the progressive increase of the time the promoter remains active. Finally, we determined the dose-response behaviour of a single transcription factor binding site in a synthetic promoter context, using the stress response element (STRE) as an example. Taken together, the luciferase assay described here is an attractive tool to rapidly and precisely determine and compare kinetic parameters of gene expression. Copyright (c) 2012 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship We thank Takayoshi Kuno for the kind gift of plasmid pGL3, containing the destabilized firefly luciferase gene. This study was supported by the Ministerio de Ciencia e Innovacion (Grant Nos BFU2008-00271 and BFU2011-23326). A.R. is the recipient of an FPI predoctoral fellowship from the Ministerio de Ciencia e Innovacion. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Yeast es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Luciferase es_ES
dc.subject Gene expression es_ES
dc.subject Dose-response es_ES
dc.subject Promoter es_ES
dc.subject Saccharomyces cerevisiae es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/yea.2905
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-00271/ES/RESPUESTA A ESTRES OSMOTICO EN SACCHAROMYCES Y ARABIDOPSIS: REGULACION DE LA CROMATINA Y DE LA ACTIVIDAD MITOCONDRIAL/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Rienzo, A.; Pascual-Ahuir Giner, MD.; Proft, MH. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast. 29(6):219-231. doi:10.1002/yea.2905 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/yea.2905 es_ES
dc.description.upvformatpinicio 219 es_ES
dc.description.upvformatpfin 231 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 233246 es_ES
dc.identifier.pmid 22674776
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502 es_ES
dc.description.references Cormack, B. (1998). Green fluorescent protein as a reporter of transcription and protein localization in fungi. Current Opinion in Microbiology, 1(4), 406-410. doi:10.1016/s1369-5274(98)80057-x es_ES
dc.description.references Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526 es_ES
dc.description.references Gasch, A. P. (2007). Comparative genomics of the environmental stress response in ascomycete fungi. Yeast, 24(11), 961-976. doi:10.1002/yea.1512 es_ES
dc.description.references Hahn, S., & Young, E. T. (2011). Transcriptional Regulation inSaccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators. Genetics, 189(3), 705-736. doi:10.1534/genetics.111.127019 es_ES
dc.description.references Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., … Young, R. A. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004), 99-104. doi:10.1038/nature02800 es_ES
dc.description.references Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710 es_ES
dc.description.references Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09 es_ES
dc.description.references Marchler, G., Schüller, C., Adam, G., & Ruis, H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. The EMBO Journal, 12(5), 1997-2003. doi:10.1002/j.1460-2075.1993.tb05849.x es_ES
dc.description.references Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046 es_ES
dc.description.references Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.x es_ES
dc.description.references Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:14<1313::aid-yea626>3.0.co;2-o es_ES
dc.description.references J. Miraglia, L., J. King, F., & Damoiseaux, R. (2011). Seeing the Light: Luminescent Reporter Gene Assays. Combinatorial Chemistry & High Throughput Screening, 14(8), 648-657. doi:10.2174/138620711796504389 es_ES
dc.description.references Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909 es_ES
dc.description.references Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851 es_ES
dc.description.references Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123 es_ES
dc.description.references Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016 es_ES
dc.description.references Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M., & Hohmann, S. (2001). The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 40(5), 1067-1083. doi:10.1046/j.1365-2958.2001.02384.x es_ES
dc.description.references Robertson, J. B., & Johnson, C. H. (2011). Luminescence as a Continuous Real-Time Reporter of Promoter Activity in Yeast Undergoing Respiratory Oscillations or Cell Division Rhythms. Yeast Genetic Networks, 63-79. doi:10.1007/978-1-61779-086-7_4 es_ES
dc.description.references Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105 es_ES
dc.description.references Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J., & Mager, W. H. (1995). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Molecular and Cellular Biology, 15(11), 6232-6245. doi:10.1128/mcb.15.11.6232 es_ES
dc.description.references Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem