- -

Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escobar Lanzuela, Neus es_ES
dc.contributor.author Ribal Sanchis, Francisco Javier es_ES
dc.contributor.author Rodrigo Señer, Alfredo es_ES
dc.contributor.author Clemente Polo, Gabriela es_ES
dc.contributor.author Pascual Vidal, Andrés es_ES
dc.contributor.author Sanjuán Pellicer, María Nieves es_ES
dc.date.accessioned 2017-06-14T11:21:03Z
dc.date.available 2017-06-14T11:21:03Z
dc.date.issued 2015-02
dc.identifier.issn 0948-3349
dc.identifier.uri http://hdl.handle.net/10251/82840
dc.description.abstract [EN] Purpose The goal of this study is to analyze the environmental improvement brought about by an alternative system for waste management proposed by the Integral-b project, funded by the European Union (EU). Its aim is to treat both used cooking oil (UCO) and organic waste from the restaurant and catering sector in Spain, by biodiesel production and anaerobic digestion, respectively. A cogeneration engine adapted to use glycerin as a fuel is implemented. Methods The functional unit (FU) is the management of the UCO and organic waste from restaurants and catering produced per person and year in Spain. The system proposed (scenario A) is compared to a system consisting of the prevailing management options for the same kind of waste (scenario B). Apart from including biodiesel production from the UCO, this reference scenario assumes that the organic waste is allocated to different streams, according to Spanish statistics. The systems under study generate different coproducts and as such are complex; therefore, system expansion is performed. Different scenario formulations are set to analyze the influence of assumptions regarding co-product credits in the results. Finally, Monte Carlo simulations are carried out to analyze parameter uncertainty. Results and discussion The environmental benefits caused by scenario A are conditional on the choices regarding coproduct credits. Scenario A causes a reduction of the impact (43-655 %) in most of the scenario formulations when the current levels of UCO collection are considered. However, when higher levels of UCO collection are taken into account for the definition of the FU, scenario B performs better for half of the scenario formulations, due to the increase in the environmental credits from glycerin production. The only impact categories for which scenario A performs unconditionally better than scenarioBare global warming and photochemical ozone creation. Parameter uncertainty appears to influence the comparative results to a lesser extent, mainly caused by the parameters involved in avoided processes. Conclusions Although system expansion appears as an option for dealing with the multifunctionality of waste management processes, uncertainty caused by choices must be assessed. Under our scenario assumptions, re-using the glycerol in the system proposed by Integral-b can be detrimental, and the reference scenario results in higher avoided burdens in some scenario formulations. Including glycerin valorization in scenario B should be considered if the biodiesel production keeps increasing in Spain. Analyzing parameter uncertainty helps to provide reliable results. es_ES
dc.description.sponsorship The authors would like to acknowledge the Generalitat Valenciana for the finantial support (PrometeoII/2014/005), and for providing the funds for N. Escobar's research contract (ACIF/2010/200). They would also like to thank all the Integral-b partners for cooperating closely and making this study possible. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal of Life Cycle Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Food waste es_ES
dc.subject Monte Carlo es_ES
dc.subject Organic waste es_ES
dc.subject System expansion es_ES
dc.subject Uncertainty es_ES
dc.subject . Used cooking oil es_ES
dc.subject Waste management es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11367-014-0825-z
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F005/ES/Alimentos saludables y competitivos: intensificación de procesos de obtención%2Fpreservación de compuestos bioactivos. Secado e inactivación microbiana/enzimática asistida por ultrasonidos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F200/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Escobar Lanzuela, N.; Ribal Sanchis, FJ.; Rodrigo Señer, A.; Clemente Polo, G.; Pascual Vidal, A.; Sanjuán Pellicer, MN. (2015). Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain. International Journal of Life Cycle Assessment. 20(2):244-262. https://doi.org/10.1007/s11367-014-0825-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11367-014-0825-z es_ES
dc.description.upvformatpinicio 244 es_ES
dc.description.upvformatpfin 262 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 282649 es_ES
dc.identifier.eissn 1614-7502
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Process 87(3):179–186 es_ES
dc.description.references Arena U, Mastellone ML, Perugini F (2003) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96:207–222 es_ES
dc.description.references Bachmaier J, Gronauer A (2007) Klimabilanz von biogasstrom. Klimabilanz der energetischen nutzung von biogas aus wirtschaftsdüngern und nachwachsenden rohstoffen. Bayerische Landesanstalt für Landwirtschaft (LfL), Freising (Germany) es_ES
dc.description.references Bao-guo T, Ji-tao S, Yan Z, Hong-tao W, Ji-ming H (2007) Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream. J Environ Sci 19:633–640 es_ES
dc.description.references Beccali G, Cellura M, Mistretta M (2001) Managing municipal solid waste. Energetic and environmental comparison among different management options. Int J Life Cycle Assess 6(4):243–249 es_ES
dc.description.references Björklund AE (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7(2):64–72 es_ES
dc.description.references Bovea MD, Ibáñez-Forés V, Gallardo A, Colomer-Mendoza FJ (2010) Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Manag 30(11):2383–2395 es_ES
dc.description.references BSI (2011) PAS 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London es_ES
dc.description.references Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123 es_ES
dc.description.references Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments. A combined model of simulation and approximation. Int J Life Cycle Assess 9(4):216–226 es_ES
dc.description.references Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Manag 32:2482–2495 es_ES
dc.description.references Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35(8):1256–1266 es_ES
dc.description.references Clift R, Doig A, Finnveden G (2000) The application of life cycle assessment to integrated solid waste management: part 1—methodology. Process Saf Environ Prot 78(4):279–287 es_ES
dc.description.references Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data: a literature review. Int J Life Cycle Assess 12(Special Issue 1):65–78 es_ES
dc.description.references Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7(4):281–294 es_ES
dc.description.references Ekvall T (2000) A market-based approach to allocation at open-loop recycling. Resour Conserv Recycl 29(1):91–109 es_ES
dc.description.references Engström R, Carlsson-Kanyama A (2004) Food losses in food service institutions. Examples from Sweden. Food Policy 29:203–213 es_ES
dc.description.references European Commission (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg es_ES
dc.description.references European Commission (2011) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Thematic Strategy on the Prevention and Recycling of Waste. Brussels (Belgium) es_ES
dc.description.references Eurostat (2012) Landfill still accounted for nearly 40 % of municipal waste treated in the EU27 in 2010. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ . Accessed 28 Jan 2014 es_ES
dc.description.references Eurostat (2013) In 2011, 40 % of treated municipal waste was recycled or composted, up from 27 % in 2001. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ . Accessed 28 Jan 2014 es_ES
dc.description.references Finnveden G, Johansson J, Lind P, Moberg A (2000) Life Cycle Assessments of energy from solid waste. ISBN 91-7056-103-6. Stockholms Universitet, Systemekologi Och Foa, Stockholm (Sweden) es_ES
dc.description.references Finnveden G, Johansson J, Lind P, Moberg A (2005) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229 es_ES
dc.description.references Giugliano M, Cernuschi S, Grosso M, Rigamonti L (2011) Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Manag 31(9):2092–2101 es_ES
dc.description.references Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49:32–48 es_ES
dc.description.references Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, de Haes HA U, de Briujn H, Van Duin R, Huigbregts MAJ (2002) Life cycle assessment: an operational guide to ISO standards. I: LCA in perspective. IIa: Guide. IIb: operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht es_ES
dc.description.references Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33 es_ES
dc.description.references Heijungs R (1996) Identification of key issues for further investigation in improving the reliability of life-cycle assessments. J Clean Prod 4(3–4):159–166 es_ES
dc.description.references Heijungs R, Guinée JB (2007) Allocation and “what-if” scenarios in life cycle assessment of waste management systems. Waste Manag 27(8):997–1005 es_ES
dc.description.references Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl C, Schmidt S, Jakeman T (eds) iEMSs 2004 International Congress: complexity and integrated resources management. International Environmental Modeling and Software Society, Osnabrueck es_ES
dc.description.references Heijungs R, Kleijn R (2001) Numerical approaches towards life cycle interpretation. Five examples. Int J Life Cycle Assess 6(3):141–148 es_ES
dc.description.references Hischier R, Weidema BP, Althaus HJ, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemeck T (2010) Implementation of Life Cycle Impact Assessment Methods. Data v2.2. Ecoinvent report No 3. Swiss Centre for Life Cycle Inventories. Zurich/Laussane, Switzerland es_ES
dc.description.references Huijbregts M (1998a) Application of uncertainty and variability in LCA. Part 1: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3(5):273–280 es_ES
dc.description.references Huijbregts M (1998b) Application of uncertainty and variability in LCA. Part 2: dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. Int J Life Cycle Assess 3(6):343–351 es_ES
dc.description.references Huijbregts M, Norris G, Bretz R, Ciroth A, Maurice B, Von Bahr B, Weidema B, De Beaufort A (2001) Framework for modeling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6(3):127–132 es_ES
dc.description.references INE (2011) Instituto Nacional de Estadística. http://www.ine.es/ . Accessed 13 Dec 2011 es_ES
dc.description.references Iriarte A, Gabarrel X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914 es_ES
dc.description.references Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348 es_ES
dc.description.references Jung J, Assen N, Bardow A (2014) Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. Int J Life Cycle Assess 19(3):661–676 es_ES
dc.description.references Kaplan PO, Barlaz MA, Ranjithan SR (2004) A procedure for Life-Cycle-Based solid waste management with consideration of uncertainty. J Ind Ecol 8(4):155–172 es_ES
dc.description.references Lechón Y, Cabal H, De la Rüa C, Caldés N, Santamaría M, Sáez R (2009) Energy and greenhouse gas emission saving of biofuels in Spain’s transport fuel. The adoption of the EU policy on biofuels. Biomass Bioenergy 33:920–932 es_ES
dc.description.references Leoneti AB, Aragao-Leoneti V, De Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145 es_ES
dc.description.references Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question. Biosci 51(5):341–352 es_ES
dc.description.references MAGRAMA (2012) Ministerio de Agricultura, Alimentación y Medio Ambiente. Análisis cualitativo de las tendencias de la restauración en 2012 en base a la percepción de los operadores del sector. http://www.magrama.gob.es/es/alimentacion/publicaciones/ . Accessed 31 Jan 2014 es_ES
dc.description.references Malça J, Freire F (2010) Uncertainty analysis in biofuel systems. An application to the life cycle of rapeseed oil. J Ind Ecol 14(2):322–334 es_ES
dc.description.references Malça J, Freire F (2011) Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew Sustain Energy Rev 15:338–351 es_ES
dc.description.references Martínez-Blanco J, Muñoz P, Antón A, Rieradevall J (2009) Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour Conserv Recycl 53:340–351 es_ES
dc.description.references Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home full scale. Waste Manag 30:983–994 es_ES
dc.description.references McDougall FR, White PR, Franke M, Hindle P (2008) Integrated solid waste management: a life cycle inventory. Wiley, Hoboken es_ES
dc.description.references Moberg Å, Finnveden G, Johansson J, Lind P (2005) Life cycle assessment of energy from solid waste—part 2: landfilling compared to other treatment methods. J Clean Prod 13(3):231–240 es_ES
dc.description.references Morgan MG, Small M (1992) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge es_ES
dc.description.references Muñoz-Cidad C, Sosvilla S (2012) Informe económico 2011. Federación Española de Industrias de la Alimentación y Bebidas (FIAB). ISBN 978-84-695-3508-0. Universidad Complutense de Madrid, Madrid (Spain) es_ES
dc.description.references Niederl A, Narodoslawsky M (2006) Ecological evaluation of processes based on by-products or waste from agriculture: life cycle assessment of biodiesel from tallow and used vegetable oil. In: Bozell JJ y Patel MK (ed) Feedstocks for the future. ACS Symposium Series, vol. 921, chapter 18pp 239–25. doi: 10.1021/bk-2006-0921.ch018 es_ES
dc.description.references Palisade Corporation (2009) Guide to using @RISK. Risk analysis and simulation add-in for Microsoft® Excel, version 5.5. Ithaca, NY es_ES
dc.description.references PE International (2013) Gabi software and database: contents for life cycle. Engineering, Stuttgart es_ES
dc.description.references Rodrigo A, Martínez L, Hag-Omer N, Miguel E (2011) Proyecto Integral-b: sistema de producción conjunta y sostenible de biodiesel y biogás a partir de residuos orgánicos del canal HORECA e industria alimentaria. Rev Tec de Medio Ambient Retema 149:26–31 es_ES
dc.description.references Sonnemann GW, Schuhmacher M, Castells F (2003) Uncertainty assessment by Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11:279–292 es_ES
dc.description.references Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14(2):335–353 es_ES
dc.description.references Talens L, Villalba G, Gabarrell X (2008) Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils. Environ Sci Technol 43:4977–4981 es_ES
dc.description.references Talens L, Lombardi L, Villalba G, Gabarrell X (2010) Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy 35:889–893 es_ES
dc.description.references Vinyes E, Oliver-Solà J, Ugaya C, Rieradevall J, Gasol CM (2013) Application of LCSA to used cooking oil waste management. Int J Life Cycle Assess 18(2):445–455 es_ES
dc.description.references Winkler J, Bilitewski B (2007) Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag 27(8):1021–1031 es_ES
dc.description.references Wright Tech Systems (2007) Converting organic waste to energy. Biological dryers vs. anaerobic digestion. http://www.wrighttech.ca/Links.htm . Accessed 17 Feb 2014 es_ES
dc.description.references Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219 es_ES
dc.description.references Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem