Mostrar el registro sencillo del ítem
dc.contributor.author | Escobar Lanzuela, Neus | es_ES |
dc.contributor.author | Ribal Sanchis, Francisco Javier | es_ES |
dc.contributor.author | Rodrigo Señer, Alfredo | es_ES |
dc.contributor.author | Clemente Polo, Gabriela | es_ES |
dc.contributor.author | Pascual Vidal, Andrés | es_ES |
dc.contributor.author | Sanjuán Pellicer, María Nieves | es_ES |
dc.date.accessioned | 2017-06-14T11:21:03Z | |
dc.date.available | 2017-06-14T11:21:03Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 0948-3349 | |
dc.identifier.uri | http://hdl.handle.net/10251/82840 | |
dc.description.abstract | [EN] Purpose The goal of this study is to analyze the environmental improvement brought about by an alternative system for waste management proposed by the Integral-b project, funded by the European Union (EU). Its aim is to treat both used cooking oil (UCO) and organic waste from the restaurant and catering sector in Spain, by biodiesel production and anaerobic digestion, respectively. A cogeneration engine adapted to use glycerin as a fuel is implemented. Methods The functional unit (FU) is the management of the UCO and organic waste from restaurants and catering produced per person and year in Spain. The system proposed (scenario A) is compared to a system consisting of the prevailing management options for the same kind of waste (scenario B). Apart from including biodiesel production from the UCO, this reference scenario assumes that the organic waste is allocated to different streams, according to Spanish statistics. The systems under study generate different coproducts and as such are complex; therefore, system expansion is performed. Different scenario formulations are set to analyze the influence of assumptions regarding co-product credits in the results. Finally, Monte Carlo simulations are carried out to analyze parameter uncertainty. Results and discussion The environmental benefits caused by scenario A are conditional on the choices regarding coproduct credits. Scenario A causes a reduction of the impact (43-655 %) in most of the scenario formulations when the current levels of UCO collection are considered. However, when higher levels of UCO collection are taken into account for the definition of the FU, scenario B performs better for half of the scenario formulations, due to the increase in the environmental credits from glycerin production. The only impact categories for which scenario A performs unconditionally better than scenarioBare global warming and photochemical ozone creation. Parameter uncertainty appears to influence the comparative results to a lesser extent, mainly caused by the parameters involved in avoided processes. Conclusions Although system expansion appears as an option for dealing with the multifunctionality of waste management processes, uncertainty caused by choices must be assessed. Under our scenario assumptions, re-using the glycerol in the system proposed by Integral-b can be detrimental, and the reference scenario results in higher avoided burdens in some scenario formulations. Including glycerin valorization in scenario B should be considered if the biodiesel production keeps increasing in Spain. Analyzing parameter uncertainty helps to provide reliable results. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the Generalitat Valenciana for the finantial support (PrometeoII/2014/005), and for providing the funds for N. Escobar's research contract (ACIF/2010/200). They would also like to thank all the Integral-b partners for cooperating closely and making this study possible. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Life Cycle Assessment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Food waste | es_ES |
dc.subject | Monte Carlo | es_ES |
dc.subject | Organic waste | es_ES |
dc.subject | System expansion | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | . Used cooking oil | es_ES |
dc.subject | Waste management | es_ES |
dc.subject.classification | ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11367-014-0825-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F005/ES/Alimentos saludables y competitivos: intensificación de procesos de obtención%2Fpreservación de compuestos bioactivos. Secado e inactivación microbiana/enzimática asistida por ultrasonidos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F200/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Escobar Lanzuela, N.; Ribal Sanchis, FJ.; Rodrigo Señer, A.; Clemente Polo, G.; Pascual Vidal, A.; Sanjuán Pellicer, MN. (2015). Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain. International Journal of Life Cycle Assessment. 20(2):244-262. https://doi.org/10.1007/s11367-014-0825-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11367-014-0825-z | es_ES |
dc.description.upvformatpinicio | 244 | es_ES |
dc.description.upvformatpfin | 262 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 282649 | es_ES |
dc.identifier.eissn | 1614-7502 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Process 87(3):179–186 | es_ES |
dc.description.references | Arena U, Mastellone ML, Perugini F (2003) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96:207–222 | es_ES |
dc.description.references | Bachmaier J, Gronauer A (2007) Klimabilanz von biogasstrom. Klimabilanz der energetischen nutzung von biogas aus wirtschaftsdüngern und nachwachsenden rohstoffen. Bayerische Landesanstalt für Landwirtschaft (LfL), Freising (Germany) | es_ES |
dc.description.references | Bao-guo T, Ji-tao S, Yan Z, Hong-tao W, Ji-ming H (2007) Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream. J Environ Sci 19:633–640 | es_ES |
dc.description.references | Beccali G, Cellura M, Mistretta M (2001) Managing municipal solid waste. Energetic and environmental comparison among different management options. Int J Life Cycle Assess 6(4):243–249 | es_ES |
dc.description.references | Björklund AE (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7(2):64–72 | es_ES |
dc.description.references | Bovea MD, Ibáñez-Forés V, Gallardo A, Colomer-Mendoza FJ (2010) Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Manag 30(11):2383–2395 | es_ES |
dc.description.references | BSI (2011) PAS 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London | es_ES |
dc.description.references | Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123 | es_ES |
dc.description.references | Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments. A combined model of simulation and approximation. Int J Life Cycle Assess 9(4):216–226 | es_ES |
dc.description.references | Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Manag 32:2482–2495 | es_ES |
dc.description.references | Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35(8):1256–1266 | es_ES |
dc.description.references | Clift R, Doig A, Finnveden G (2000) The application of life cycle assessment to integrated solid waste management: part 1—methodology. Process Saf Environ Prot 78(4):279–287 | es_ES |
dc.description.references | Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data: a literature review. Int J Life Cycle Assess 12(Special Issue 1):65–78 | es_ES |
dc.description.references | Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7(4):281–294 | es_ES |
dc.description.references | Ekvall T (2000) A market-based approach to allocation at open-loop recycling. Resour Conserv Recycl 29(1):91–109 | es_ES |
dc.description.references | Engström R, Carlsson-Kanyama A (2004) Food losses in food service institutions. Examples from Sweden. Food Policy 29:203–213 | es_ES |
dc.description.references | European Commission (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg | es_ES |
dc.description.references | European Commission (2011) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Thematic Strategy on the Prevention and Recycling of Waste. Brussels (Belgium) | es_ES |
dc.description.references | Eurostat (2012) Landfill still accounted for nearly 40 % of municipal waste treated in the EU27 in 2010. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ . Accessed 28 Jan 2014 | es_ES |
dc.description.references | Eurostat (2013) In 2011, 40 % of treated municipal waste was recycled or composted, up from 27 % in 2001. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ . Accessed 28 Jan 2014 | es_ES |
dc.description.references | Finnveden G, Johansson J, Lind P, Moberg A (2000) Life Cycle Assessments of energy from solid waste. ISBN 91-7056-103-6. Stockholms Universitet, Systemekologi Och Foa, Stockholm (Sweden) | es_ES |
dc.description.references | Finnveden G, Johansson J, Lind P, Moberg A (2005) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229 | es_ES |
dc.description.references | Giugliano M, Cernuschi S, Grosso M, Rigamonti L (2011) Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Manag 31(9):2092–2101 | es_ES |
dc.description.references | Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49:32–48 | es_ES |
dc.description.references | Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, de Haes HA U, de Briujn H, Van Duin R, Huigbregts MAJ (2002) Life cycle assessment: an operational guide to ISO standards. I: LCA in perspective. IIa: Guide. IIb: operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht | es_ES |
dc.description.references | Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33 | es_ES |
dc.description.references | Heijungs R (1996) Identification of key issues for further investigation in improving the reliability of life-cycle assessments. J Clean Prod 4(3–4):159–166 | es_ES |
dc.description.references | Heijungs R, Guinée JB (2007) Allocation and “what-if” scenarios in life cycle assessment of waste management systems. Waste Manag 27(8):997–1005 | es_ES |
dc.description.references | Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl C, Schmidt S, Jakeman T (eds) iEMSs 2004 International Congress: complexity and integrated resources management. International Environmental Modeling and Software Society, Osnabrueck | es_ES |
dc.description.references | Heijungs R, Kleijn R (2001) Numerical approaches towards life cycle interpretation. Five examples. Int J Life Cycle Assess 6(3):141–148 | es_ES |
dc.description.references | Hischier R, Weidema BP, Althaus HJ, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemeck T (2010) Implementation of Life Cycle Impact Assessment Methods. Data v2.2. Ecoinvent report No 3. Swiss Centre for Life Cycle Inventories. Zurich/Laussane, Switzerland | es_ES |
dc.description.references | Huijbregts M (1998a) Application of uncertainty and variability in LCA. Part 1: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3(5):273–280 | es_ES |
dc.description.references | Huijbregts M (1998b) Application of uncertainty and variability in LCA. Part 2: dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. Int J Life Cycle Assess 3(6):343–351 | es_ES |
dc.description.references | Huijbregts M, Norris G, Bretz R, Ciroth A, Maurice B, Von Bahr B, Weidema B, De Beaufort A (2001) Framework for modeling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6(3):127–132 | es_ES |
dc.description.references | INE (2011) Instituto Nacional de Estadística. http://www.ine.es/ . Accessed 13 Dec 2011 | es_ES |
dc.description.references | Iriarte A, Gabarrel X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914 | es_ES |
dc.description.references | Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348 | es_ES |
dc.description.references | Jung J, Assen N, Bardow A (2014) Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. Int J Life Cycle Assess 19(3):661–676 | es_ES |
dc.description.references | Kaplan PO, Barlaz MA, Ranjithan SR (2004) A procedure for Life-Cycle-Based solid waste management with consideration of uncertainty. J Ind Ecol 8(4):155–172 | es_ES |
dc.description.references | Lechón Y, Cabal H, De la Rüa C, Caldés N, Santamaría M, Sáez R (2009) Energy and greenhouse gas emission saving of biofuels in Spain’s transport fuel. The adoption of the EU policy on biofuels. Biomass Bioenergy 33:920–932 | es_ES |
dc.description.references | Leoneti AB, Aragao-Leoneti V, De Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145 | es_ES |
dc.description.references | Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question. Biosci 51(5):341–352 | es_ES |
dc.description.references | MAGRAMA (2012) Ministerio de Agricultura, Alimentación y Medio Ambiente. Análisis cualitativo de las tendencias de la restauración en 2012 en base a la percepción de los operadores del sector. http://www.magrama.gob.es/es/alimentacion/publicaciones/ . Accessed 31 Jan 2014 | es_ES |
dc.description.references | Malça J, Freire F (2010) Uncertainty analysis in biofuel systems. An application to the life cycle of rapeseed oil. J Ind Ecol 14(2):322–334 | es_ES |
dc.description.references | Malça J, Freire F (2011) Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew Sustain Energy Rev 15:338–351 | es_ES |
dc.description.references | Martínez-Blanco J, Muñoz P, Antón A, Rieradevall J (2009) Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour Conserv Recycl 53:340–351 | es_ES |
dc.description.references | Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home full scale. Waste Manag 30:983–994 | es_ES |
dc.description.references | McDougall FR, White PR, Franke M, Hindle P (2008) Integrated solid waste management: a life cycle inventory. Wiley, Hoboken | es_ES |
dc.description.references | Moberg Å, Finnveden G, Johansson J, Lind P (2005) Life cycle assessment of energy from solid waste—part 2: landfilling compared to other treatment methods. J Clean Prod 13(3):231–240 | es_ES |
dc.description.references | Morgan MG, Small M (1992) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Muñoz-Cidad C, Sosvilla S (2012) Informe económico 2011. Federación Española de Industrias de la Alimentación y Bebidas (FIAB). ISBN 978-84-695-3508-0. Universidad Complutense de Madrid, Madrid (Spain) | es_ES |
dc.description.references | Niederl A, Narodoslawsky M (2006) Ecological evaluation of processes based on by-products or waste from agriculture: life cycle assessment of biodiesel from tallow and used vegetable oil. In: Bozell JJ y Patel MK (ed) Feedstocks for the future. ACS Symposium Series, vol. 921, chapter 18pp 239–25. doi: 10.1021/bk-2006-0921.ch018 | es_ES |
dc.description.references | Palisade Corporation (2009) Guide to using @RISK. Risk analysis and simulation add-in for Microsoft® Excel, version 5.5. Ithaca, NY | es_ES |
dc.description.references | PE International (2013) Gabi software and database: contents for life cycle. Engineering, Stuttgart | es_ES |
dc.description.references | Rodrigo A, Martínez L, Hag-Omer N, Miguel E (2011) Proyecto Integral-b: sistema de producción conjunta y sostenible de biodiesel y biogás a partir de residuos orgánicos del canal HORECA e industria alimentaria. Rev Tec de Medio Ambient Retema 149:26–31 | es_ES |
dc.description.references | Sonnemann GW, Schuhmacher M, Castells F (2003) Uncertainty assessment by Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11:279–292 | es_ES |
dc.description.references | Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14(2):335–353 | es_ES |
dc.description.references | Talens L, Villalba G, Gabarrell X (2008) Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils. Environ Sci Technol 43:4977–4981 | es_ES |
dc.description.references | Talens L, Lombardi L, Villalba G, Gabarrell X (2010) Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy 35:889–893 | es_ES |
dc.description.references | Vinyes E, Oliver-Solà J, Ugaya C, Rieradevall J, Gasol CM (2013) Application of LCSA to used cooking oil waste management. Int J Life Cycle Assess 18(2):445–455 | es_ES |
dc.description.references | Winkler J, Bilitewski B (2007) Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag 27(8):1021–1031 | es_ES |
dc.description.references | Wright Tech Systems (2007) Converting organic waste to energy. Biological dryers vs. anaerobic digestion. http://www.wrighttech.ca/Links.htm . Accessed 17 Feb 2014 | es_ES |
dc.description.references | Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219 | es_ES |
dc.description.references | Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351 | es_ES |