Mostrar el registro sencillo del ítem
dc.contributor.author | Thome, Néstor | es_ES |
dc.date.accessioned | 2017-06-15T11:59:23Z | |
dc.date.available | 2017-06-15T11:59:23Z | |
dc.date.issued | 2016-10 | |
dc.identifier.issn | 0001-9054 | |
dc.identifier.uri | http://hdl.handle.net/10251/82889 | |
dc.description.abstract | This paper gives simple proofs of Sylvester (` = 2) and Frobenius (` = 3) inequalities. Moreover, a new sufficient condition for the equality of the Frobenius inequality is provided. In addition, an extension for ` > 3 matrices and an application to generalized inverses are provided. | es_ES |
dc.description.sponsorship | This paper has been partially supported by Ministerio de Economia y Competitividad (Grant DGI MTM2013-43678P and Red de Excelencia MTM2015-68805-REDT). The author thanks the referees for their valuable suggestions. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Aequationes Mathematicae | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sylvester inequality | es_ES |
dc.subject | Frobenius inequality | es_ES |
dc.subject | Moore-Penrose inverse | es_ES |
dc.subject | Rank | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00010-016-0412-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Thome, N. (2016). Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices. Aequationes Mathematicae. 90(5):951-960. https://doi.org/10.1007/s00010-016-0412-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00010-016-0412-4 | es_ES |
dc.description.upvformatpinicio | 951 | es_ES |
dc.description.upvformatpfin | 960 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 302376 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Baksalary J.K., Kala R.: The matrix equation AX − YB = C. Linear Algebra Appl. 25, 41–43 (1979) | es_ES |
dc.description.references | Baksalary O.M., Trenkler G.: On k-potent matrices.. Electr. J. Linear Algebra 26, 446–470 (2013) | es_ES |
dc.description.references | Ben-Israel, A., Greville T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Wiley, New York (2003) | es_ES |
dc.description.references | Marsaglia G., Styan G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974) | es_ES |
dc.description.references | Mosić D., Djordjević D.S.: Condition number of the W-weighted Drazin inverse. Appl. Math. Computat. 203(1), 308–318 (2008) | es_ES |
dc.description.references | Puntanen S., Styan G.P.H., Isotalo J.: Matrix Tricks for Linear Statistical Models. Springer, Berlin (2011) | es_ES |
dc.description.references | Tian Y., Styan G.P.H.: A new rank formula for idempotent matrices with applications. Comment. Math. Univ. Carolinae 43(2), 379–384 (2002) | es_ES |
dc.description.references | Wang G., Wei Y., Qiao S.: Generalized Inverses: Theory and Computations. Science Press, Beijing (2004) | es_ES |