- -

Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices

Show simple item record

Files in this item

dc.contributor.author Thome, Néstor es_ES
dc.date.accessioned 2017-06-15T11:59:23Z
dc.date.available 2017-06-15T11:59:23Z
dc.date.issued 2016-10
dc.identifier.issn 0001-9054
dc.identifier.uri http://hdl.handle.net/10251/82889
dc.description.abstract This paper gives simple proofs of Sylvester (` = 2) and Frobenius (` = 3) inequalities. Moreover, a new sufficient condition for the equality of the Frobenius inequality is provided. In addition, an extension for ` > 3 matrices and an application to generalized inverses are provided. es_ES
dc.description.sponsorship This paper has been partially supported by Ministerio de Economia y Competitividad (Grant DGI MTM2013-43678P and Red de Excelencia MTM2015-68805-REDT). The author thanks the referees for their valuable suggestions. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Aequationes Mathematicae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sylvester inequality es_ES
dc.subject Frobenius inequality es_ES
dc.subject Moore-Penrose inverse es_ES
dc.subject Rank es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00010-016-0412-4
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Thome, N. (2016). Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices. Aequationes Mathematicae. 90(5):951-960. https://doi.org/10.1007/s00010-016-0412-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00010-016-0412-4 es_ES
dc.description.upvformatpinicio 951 es_ES
dc.description.upvformatpfin 960 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 302376 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Baksalary J.K., Kala R.: The matrix equation AX − YB =  C. Linear Algebra Appl. 25, 41–43 (1979) es_ES
dc.description.references Baksalary O.M., Trenkler G.: On k-potent matrices.. Electr. J. Linear Algebra 26, 446–470 (2013) es_ES
dc.description.references Ben-Israel, A., Greville T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Wiley, New York (2003) es_ES
dc.description.references Marsaglia G., Styan G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974) es_ES
dc.description.references Mosić D., Djordjević D.S.: Condition number of the W-weighted Drazin inverse. Appl. Math. Computat. 203(1), 308–318 (2008) es_ES
dc.description.references Puntanen S., Styan G.P.H., Isotalo J.: Matrix Tricks for Linear Statistical Models. Springer, Berlin (2011) es_ES
dc.description.references Tian Y., Styan G.P.H.: A new rank formula for idempotent matrices with applications. Comment. Math. Univ. Carolinae 43(2), 379–384 (2002) es_ES
dc.description.references Wang G., Wei Y., Qiao S.: Generalized Inverses: Theory and Computations. Science Press, Beijing (2004) es_ES


This item appears in the following Collection(s)

Show simple item record