dc.contributor.author |
Thome, Néstor
|
es_ES |
dc.date.accessioned |
2017-06-15T11:59:23Z |
|
dc.date.available |
2017-06-15T11:59:23Z |
|
dc.date.issued |
2016-10 |
|
dc.identifier.issn |
0001-9054 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/82889 |
|
dc.description.abstract |
This paper gives simple proofs of Sylvester (` = 2) and Frobenius
(` = 3) inequalities. Moreover, a new sufficient condition for the
equality of the Frobenius inequality is provided. In addition, an extension
for ` > 3 matrices and an application to generalized inverses
are provided. |
es_ES |
dc.description.sponsorship |
This paper has been partially supported by Ministerio de Economia y Competitividad (Grant DGI MTM2013-43678P and Red de Excelencia MTM2015-68805-REDT). The author thanks the referees for their valuable suggestions. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation.ispartof |
Aequationes Mathematicae |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Sylvester inequality |
es_ES |
dc.subject |
Frobenius inequality |
es_ES |
dc.subject |
Moore-Penrose inverse |
es_ES |
dc.subject |
Rank |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s00010-016-0412-4 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària |
es_ES |
dc.description.bibliographicCitation |
Thome, N. (2016). Inequalities and equalities for l = 2 (Sylvester), l = 3 (Frobenius), and l > 3 matrices. Aequationes Mathematicae. 90(5):951-960. https://doi.org/10.1007/s00010-016-0412-4 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1007/s00010-016-0412-4 |
es_ES |
dc.description.upvformatpinicio |
951 |
es_ES |
dc.description.upvformatpfin |
960 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
90 |
es_ES |
dc.description.issue |
5 |
es_ES |
dc.relation.senia |
302376 |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Baksalary J.K., Kala R.: The matrix equation AX − YB = C. Linear Algebra Appl. 25, 41–43 (1979) |
es_ES |
dc.description.references |
Baksalary O.M., Trenkler G.: On k-potent matrices.. Electr. J. Linear Algebra 26, 446–470 (2013) |
es_ES |
dc.description.references |
Ben-Israel, A., Greville T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Wiley, New York (2003) |
es_ES |
dc.description.references |
Marsaglia G., Styan G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974) |
es_ES |
dc.description.references |
Mosić D., Djordjević D.S.: Condition number of the W-weighted Drazin inverse. Appl. Math. Computat. 203(1), 308–318 (2008) |
es_ES |
dc.description.references |
Puntanen S., Styan G.P.H., Isotalo J.: Matrix Tricks for Linear Statistical Models. Springer, Berlin (2011) |
es_ES |
dc.description.references |
Tian Y., Styan G.P.H.: A new rank formula for idempotent matrices with applications. Comment. Math. Univ. Carolinae 43(2), 379–384 (2002) |
es_ES |
dc.description.references |
Wang G., Wei Y., Qiao S.: Generalized Inverses: Theory and Computations. Science Press, Beijing (2004) |
es_ES |