- -

Reframing in context: A systematic approach for model reuse in machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reframing in context: A systematic approach for model reuse in machine learning

Mostrar el registro completo del ítem

Hernández Orallo, J.; Martínez Usó, A.; Prudencio, RBC.; Kull, M.; Flach, P.; Ahmed, CF.; Lachiche, N. (2016). Reframing in context: A systematic approach for model reuse in machine learning. AI Communications. 29(5):551-566. https://doi.org/10.3233/AIC-160705

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83056

Ficheros en el ítem

Metadatos del ítem

Título: Reframing in context: A systematic approach for model reuse in machine learning
Autor: Hernández Orallo, José Martínez Usó, Adolfo Prudencio, Ricardo B. C. Kull, Meelis Flach, Peter Ahmed, Chowdhury Farhan Lachiche, Nicolas
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
We describe a systematic approach called reframing, defined as the process of preparing a machine learning model (e.g., a classifier) to perform well over a range of operating contexts. One way to achieve this is by ...[+]
Palabras clave: Machine learning , Reframing , Model reuse , Operating context , Cost-sensitive evaluation
Derechos de uso: Reserva de todos los derechos
Fuente:
AI Communications. (issn: 0921-7126 )
DOI: 10.3233/AIC-160705
Editorial:
IOS Press
Versión del editor: http://dx.doi.org/10.3233/AIC-160705
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//PCIN-2013-037/ES/RETHINKING THE ESSENCE, FLEXIBILITY AND REUSABILITY OF ADVANCED MODEL EXPLOITATION/
info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/
Agradecimientos:
We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. This work was supported by the REFRAME project, granted by the European Coordinated Research on Long-term Challenges ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem