- -

Reframing in context: A systematic approach for model reuse in machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reframing in context: A systematic approach for model reuse in machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Martínez Usó, Adolfo es_ES
dc.contributor.author Prudencio, Ricardo B. C. es_ES
dc.contributor.author Kull, Meelis es_ES
dc.contributor.author Flach, Peter es_ES
dc.contributor.author Ahmed, Chowdhury Farhan es_ES
dc.contributor.author Lachiche, Nicolas es_ES
dc.date.accessioned 2017-06-16T10:46:21Z
dc.date.available 2017-06-16T10:46:21Z
dc.date.issued 2016
dc.identifier.issn 0921-7126
dc.identifier.uri http://hdl.handle.net/10251/83056
dc.description.abstract We describe a systematic approach called reframing, defined as the process of preparing a machine learning model (e.g., a classifier) to perform well over a range of operating contexts. One way to achieve this is by constructing a versatile model, which is not fitted to a particular context, and thus enables model reuse. We formally characterise reframing in terms of a taxonomy of context changes that may be encountered and distinguish it from model retraining and revision. We then identify three main kinds of reframing: input reframing, output reframing and structural reframing. We proceed by reviewing areas and problems where some notion of reframing has already been developed and shown useful, if under different names: re-optimising, adapting, tuning, thresholding, etc. This exploration of the landscape of reframing allows us to identify opportunities where reframing might be possible and useful. Finally, we describe related approaches in terms of the problems they address or the kind of solutions they obtain. The paper closes with a re-interpretation of the model development and deployment process with the use of reframing. es_ES
dc.description.sponsorship We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. This work was supported by the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences Technologies ERA-Net (CHIST-ERA), funded by their respective national funding agencies in the UK (EPSRC, EP/K018728), France and Spain (MINECO, PCIN-2013-037). It has also been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-69175-C4-1-R and by Generalitat Valenciana PROMETEOII/2015/013. en_EN
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof AI Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine learning es_ES
dc.subject Reframing es_ES
dc.subject Model reuse es_ES
dc.subject Operating context es_ES
dc.subject Cost-sensitive evaluation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Reframing in context: A systematic approach for model reuse in machine learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/AIC-160705
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PCIN-2013-037/ES/RETHINKING THE ESSENCE, FLEXIBILITY AND REUSABILITY OF ADVANCED MODEL EXPLOITATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Hernández Orallo, J.; Martínez Usó, A.; Prudencio, RBC.; Kull, M.; Flach, P.; Ahmed, CF.; Lachiche, N. (2016). Reframing in context: A systematic approach for model reuse in machine learning. AI Communications. 29(5):551-566. https://doi.org/10.3233/AIC-160705 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3233/AIC-160705 es_ES
dc.description.upvformatpinicio 551 es_ES
dc.description.upvformatpfin 566 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 327774 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem