- -

A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents

Show full item record

Colomer Granero, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Guixeres Provinciale, J.; Ausin-Azofra, JM.; Alcañiz Raya, ML. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience. 10(74):1-16. doi:10.3389/fncom.2016.00074

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83259

Files in this item

Item Metadata

Title: A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents
Author:
UPV Unit: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, ...[+]
Subjects: Audiovisual Content Evaluation , Effectiveness , Physiological Signal , Electroencephalography (EEG) , Electrocardiography 18 (ECG) , Galvanic Skin Response (GSR) , Respiration , Feature extraction , Advanced Classifiers
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Computational Neuroscience. (issn: 1662-5188 )
DOI: 10.3389/fncom.2016.00074
Publisher:
Frontiers Media
Publisher version: http://dx.doi.org/10.3389/fncom.2016.00074
Description: This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission
Thanks:
This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Universitat Politecnica de Valencia in order to research and apply new technologies and neuroscience in communication, distribution and ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record